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Abstract

Existing classifier evaluation methods do not fully capture the intended use of

classifiers in hybrid intrusion detection systems (IDS), systems that employ machine

learning alongside a signature-based IDS. This research challenges traditional classifier

evaluation methods in favor of a value-focused evaluation method that incorporates

evaluator-specific weights for classifier and prediction threshold selection. By allowing

the evaluator to weight known and unknown threat detection by alert classification,

classifier selection is optimized to evaluator values for this application. The proposed

evaluation methods are applied to a Cyber Defense Exercise (CDX) dataset. Network

data is processed to produce connection-level features, then labeled by correlating

packet-level alerts from a signature-based IDS. Seven machine learning algorithms

are evaluated using traditional methods and the value-focused method. Comparing

results from the two evaluation methods, fallacies are revealed with 2 of the 5 notional

weighting schemes that would lead to suboptimal classifier and prediction threshold

selection when using traditional methods that do not consider evaluator values.
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EVALUATING MACHINE LEARNING CLASSIFIERS FOR HYBRID

NETWORK INTRUSION DETECTION SYSTEMS

I. Introduction

Intrusion detection is often the primary triggering mechanism for network security

analysts to respond to malicious activities on a computer network. The volume

and velocity of communications on today’s networks require the use of automated

Intrusion Detection Systems (IDS) as human analysts cannot review all transmitted

information manually. IDS alerts are typically the starting point for an analyst’s

review of an intrusion. After the initial alert, an analyst performs investigations into

raw network data, system log sources, and other sources to confirm or deny the alert.

An IDS often produces false alarms and misses threats. False alarms cause undue

workload on analysts and missed threats leave the organization in a state of false

security as intruders unknowingly infiltrate their networks.

The current cyber environment is littered with intrusions and data breaches. The

2013 Data Breach Investigations Report by Verizon analyzed 47,000 security incidents

and 621 confirmed data breaches and indicated that 66% of the 621 data breaches

“took months or more to discover” [45]. This high percentage of data breaches with

delayed detection times reveals one of many problems with the operationalization

of IDSes. Other challenges in the intrusion detection problem include false alarms,

missed attacks, and the detection of unknown attacks.

Misuse detection, the use of signatures for known threats, is the primary method

used in today’s IDSes. As vulnerabilities are discovered, signatures are created and

used for detection. This method is reactive and is not capable of detecting unknown
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threats, those threats which the detection system lacks a corresponding detection

signature. Research on anomaly-based intrusion detection systems has been ongo-

ing since the 1980’s but has failed to establish its place in the operational environ-

ment that is dominated by signature-based systems. This is primarily attributed to

high false positive rates from these anomaly-based systems. Being that signature-

based systems cannot detect unknown threats, it is necessary that user confidence

for anomaly-based systems improves and operational use of these systems increases.

Hybrid solutions, those that incorporate both a misuse and anomaly detector, have

been shown to provide many benefits such as reducing false positives and negatives,

supporting verification of true and false positives, and detecting unknown threats.

Deploying an anomaly-based IDS in a hybrid configuration alongside an existing

signature-based IDS is the next logical advancement in IDS technologies, allowing an

organization to enhance an existing signature-based network sensor with the capabil-

ity of detecting unknown threats. This is a classification problem that is commonly

addressed using machine learning classifiers. Much research has been done over the

past 15 years with machine learning in the intrusion detection domain. Yet, there

is no clear method of selecting an optimal classifier, or set of classifiers, for use in

a hybrid IDS architecture. While the “no free lunch” theorem [47] explains the im-

plications of optimization, this research aims to fill the gap of selecting an optimal

classifier in terms of evaluator-specified values by providing a methodology for eval-

uating classifiers for specific use in hybrid IDS systems. The intent is to provide an

evaluation method that will improve user confidence in the use of machine learning

classifiers alongside existing signature-based IDSes.
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1.1 Research Goals and Hypothesis

The overall goal of this research is to develop a methodology of evaluating a

threat classifier system to use in a hybrid IDS architecture. Emphasis is placed on

detecting unknown threats while minimizing false positives and negatives as these

are common goals among all organizations. Threat classification is accomplished at

the connection-level with experiments at multiple layers of the Transmission Control

Protocol (TCP)/Internet Protocol (IP) stack to determine the appropriate layer to

generalize network traffic. The proposed methodology should allow an organization

to develop and test multiple machine learning classifiers in a sensor-specific manner,

tailoring the selection to the organization’s own data and network services. The ability

to tailor classifier selection based on other organization-specific goals, resources, and

security requirements should also be included. As these goals and requirements change

over time, the evaluator should be able to quickly reevaluate classifiers. An evaluator

should be able to weight parameters for detecting known and unknown threats, false

positives, and detection rates by type of attack. Specific research goals are:

1. Provide a machine learning classifier evaluation methodology which incorporates

a weighted scheme allowing evaluator-specific requirements to be considered in

the evaluation process.

2. Demonstrate an engineering advantage by applying the methodology to evalu-

ate multiple classifiers used in intrusion detection experiments using notional

weighting schemes.

3. Conduct experiments at various layers in the TCP/IP stack to determine if the

layer in which network traffic is generalized has any statistical significance in

results.
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The hypothesis is that there will be an engineering advantage to incorporating an

evaluator-specific weighting scheme into the classifier evaluation process. While not

measured, user confidence for selected machine learning classifiers should increase by

selecting classifiers developed that align with user values.

1.2 Research Contributions

This research contributes to the field of intrusion detection, with an emphasis

in the application of machine learning. This research presents a comprehensive ap-

proach, similar to cross-validation, to evaluate a classifier’s ability to detect unknown

threats by allowing every malicious connection in the dataset the opportunity to be

tested as an unknown threat. This research also applies the Value-Focused Thinking

(VFT) decision-making approach, from the field of operations research, to evaluate

classifiers using a value hierarchy model constructed towards using the classifiers in a

hybrid IDS architecture. Lastly, this research presents a unique approach to parsing

a traditional Precision-Recall (PR) curve into multiple curves representing different

attack classifications allowing the classification performance for each classifier to be

compared by attack class across the entire range of prediction thresholds.

1.3 Preview

This chapter introduced problems within the intrusion detection domain, focus-

ing on the operationalization of machine learning in hybrid IDS architectures. The

research goals, hypotheses, and contributions were also presented. Chapter II covers

related work to include a background of IDS technologies and the application of ma-

chine learning to intrusion detection. Chapter III explains the methodologies used for

the experiments in this research. Experiment results are in Chapter IV. Conclusions

are provided in Chapter V along with recommendations for future research.
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II. Related Research

2.1 Chapter Overview

This chapter provides a background of IDS technologies and how machine learning

is being applied to the problem. The first section covers a brief history of IDSes and

two popular open-source IDS applications. The following section examines intrusion

detection methodologies, thoroughly explaining the difference between misuse and

anomaly detection and how they can be applied in a hybrid configuration. Next, a

literature review of recent research on the application of machine learning to net-

work traffic and threat detection classification is presented. Finally, a brief technical

background of the machine learning classifiers used in this thesis is provided.

2.2 Intrusion Detection Systems

An intrusion is “the act of wrongfully entering upon, seizing, or taking possession

of the property of another” [4]. Adapting this definition to the cyber domain, an

intrusion can be considered any attempt to compromise a system’s confidentiality,

integrity, or availability. The early works of detecting intrusions in the cyber domain

can be traced back to the 1980’s with the seminal research conducted by Ander-

son [11] and Denning [15]. The detection methodology shifted from primarily manual

inspection of audit logs to automated systems that analyze large amounts of data in

real-time.

The National Institute of Standards and Technology (NIST) categorizes IDSes

by the method used to collect and analyze audit data [40]. A Network-Based Intru-

sion Detection System (NIDS) analyzes network traffic for suspicious behavior. A

Host-Based Intrusion Detection System (HIDS) monitors activity on a specific host.

A wireless IDS analyzes wireless network traffic for suspicious behavior. Finally, a
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network behavior analysis system analyzes statistical features of network traffic to

identify suspicious behavior.

Many challenges exist in intrusion detection. Intrusion detection is ultimately a

classification problem. Audit data is collected, analyzed, and classified as malicious

or normal. As with any other classification problem, false positives and negatives are

a challenge. Other challenges specific to network intrusion detection are constantly

evolving environments, detection of novel attacks, and encryption. Research in the

IDS domain is limited by lack of ground truth data and standardized datasets to

evaluate IDS technologies.

This research is restricted to network-based IDS. The following sections provide

in depth detail of two popular open-source NIDS, Snort and Bro, both of which are

used in the research experiments of this thesis.

2.2.1 Snort.

Originally released in 1999, Snort built upon tcpdump, a packet sniffing tool,

adding the ability for packet payload inspection using easy to write rules [38]. Snort

has since become the leading open source signature-based IDS. The architecture show-

ing the data flow through Snort is shown in Figure 2.1. Each process within the

architecture is now briefly described:

• Libpcap Library : An open source, UNIX-based, library that provides an appli-

cation programming interface (API) to capture network packet data. Designed

to be used with C or C++, but wrappers are available to access the API with

languages like Perl, Python, Java, C#, or Ruby [20]. Winpcap is the Windows

equivalent.

• Packet Decoder : Receives the Ethernet frame from libpcap and analyzes packet

headers for IP and transport layers. Decoder rules can be configured to per-
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Figure 2.1. Snort Architecture and Data Flow

form actions at this step if desired, such as dropping a packet prior to it being

forwarded to the preprocessor.

• Preprocessor Plug-Ins : Modular plug-ins that run after each packet is decoded,

but prior to the detection engine [6]. Plug-ins are used for most application-level

services (e.g., Hypertext Transfer Protocol (HTTP), Simple Mail Transfer Pro-

tocol (SMTP), File Transfer Protocol (FTP), Post Office Protocol v3 (POP3))

in order to process application-layer header information prior to the detection

engine. This allows rules to be written using protocol-specific fields. Other plug-

ins are used for specific functionality, such as inspecting fragmented packets and

detection of port scan activities.

• Detection Engine: The process used to compare each packet with the rules

stored in the ruleset. A simplified view of this process is that every packet is

compared to every rule in the ruleset. In fact, there is a complex data structure

consisting of chains of rules and options that are used to compare rules to packet

contents. Many improvements to this process have been researched to increase

the speed of detections and minimize packet drops on high bandwidth interfaces.

Specific details of this process is beyond the scope of this thesis.

• Ruleset : Repository of rules used to perform packet inspection. Emerging-

Threats (ET) [3], an open source ruleset library maintained by the Snort com-

munity, and the Talos (formerly the Vulnerability Research Team (VRT)) [7]
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ruleset libraries are the two leading rulesets in use. Both libraries offer paid

subscription and free versions of their rulesets, the difference being less delay

in receiving newly developed rules for paid users. Users also have the ability to

create site specific rules in addition to these public rulesets. Rules are stored in

flat-text files.

• Output Plug-Ins : Modular plug-ins that enable alerts to be output in various

formats. Alerts can be output as a simple text file or formatted for an Structure

Query Language (SQL) database, syslog, or other desired format. The mod-

ularity of the output plug-ins allows for customization to any user’s network

security monitoring architecture.

Snort operates by inspecting individual packets using rules that match patterns

of bytes. An example Snort rule is provided in Figure 2.2. This rule sends an alert

when a TCP packet is detected from $EXTERNAL NET any port, to $HTTP SERVERS

$HTTP PORTS meeting the conditions specified within the parenthesis. $EXTERNAL NET,

$HTTP SERVERS, and $HTTP PORTS are dynamic variables that are set in the Snort

configuration file. The alert message “ET WEB SERVER cmd.exe In URI - Possible

Command Execution Attempt” is sent when a TCP connection is established and

the content of “/cmd.exe” is detected in the http uri field of the HTTP header. The

reference document is noted along with the class type, signature identification number,

and signature revision number. This signature ultimately alerts when “/cmd.exe” is

found in a specific type of packet under specific conditions that have been deemed to

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"ET \

WEB_SERVER cmd.exe In URI - Possible Command Execution Attempt"; \

flow:to_server,established; content:"/cmd.exe"; fast_pattern:only; \

nocase; http_uri; reference:url,doc.emergingthreats.net/2009361; \

classtype:attempted-recon; sid:2009361; rev:6;)

Figure 2.2. Example Snort Rule
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represent a command execution attempt. This is a rather simple rule using a small

set of the options available in Snort. A full description of options with more rule

examples can be found in the Snort Users Manual [6].

Alert classification types are commonly used for management of rules and to aid

in alert analysis. By default, the priority of each rule is set to the corresponding

alert classification. Priorities can be modified per rule if desired. Example alert

classifications are network scans, attempted denial-of-service, and shellcode detection.

The complete list of default alert classifications and priorities are listed in Appendix A.

The use of alert classifications will be leveraged in the experiments of this thesis.

2.2.2 Bro.

Bro is an open-source network security monitor originally developed by Paxson [34]

and currently maintained as a joint team of researchers and developers at the Inter-

national Computer Science Institute in Berkeley, CA and the National Center for

Supercomputing Applications in Urbana-Champaign, IL [1]. Bro incorporates a sep-

aration of mechanism and policy that does not inherit a “good” vs “bad” ideology

like a typical IDS, but instead leaves the user to define a local policy designed around

network-based events. Instead of loading rules that detect malicious activity, all net-

work data is monitored and logged, then scripts are used to take action when specific

criteria are met.

Bro also differs from a typical IDS in that it is connection-based rather than

packet-based, meaning that events are related to connections where a typical IDS

such as Snort relates alerts to packets. A connection can contain one or many pack-

ets. Bro’s definition of a connection includes TCP connections as well as User Data-

gram Protocol (UDP) and Internet Control Message Protocol (ICMP) flows. TCP

connections in Bro are created when the first packet of an unknown connection, a
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connection not actively being monitored, is seen and closed when the TCP connec-

tion is terminated or a configured timeout interval has been reached. UDP and ICMP

connections are created when the first packet of an unknown connection is seen and

closed when a configured timeout interval has been reached. UDP and ICMP packets

are related to actively monitored connections if they contain matching source and

destination IP addresses and ports and arrive before the timeout interval has elapsed.

Every connection receives a unique identifier.

The architecture of Bro is presented in Figure 2.3. Like Snort, network data

is first filtered using libpcap. The filtered network data is processed by the Event

Engine which abstracts events from the network data. Example events are connec-

tion established, http request, http reply, and connection finished. Protocol analyz-

ers are included for all common networking protocols which define each event and

the information contained within each event. The event stream is then processed by

the Policy Script Interpreter which contains a set of scripts that take action based

on the events received. Actions could include logging information, generating alerts,

Network

Event stream

Record to disk

Real-time notification

Filtered packet stream

Event Engine

Policy script

Event control

Tcpdump filter

Packet stream

Policy Script Interpreter

libpcap

Figure 2.3. Structure of Bro System [34]
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or executing additional scripts or programs. Default policy scripts are included with

Bro to provide an initial logging and malicious detection capabilities. The default

logs produced by Bro are the conn.log, http.log, dns.log, dhcp.log, ftp.log, smtp.log,

and others. Each log contains specific features related to connections of a specific

type. Users are also able to develop their own local policy scripts using the Bro

programming language to produce logs and alerts as desired.

The conn.log is largest of the default logs as it contains the details on every con-

Table 2.1. Bro conn.log Fields [2]

Feature Data Type Description
ts time Time of first packet
uid string A unique identifier of the connection
id.orig h addr Originator’s IP address
id.orig p port Originator’s port number
id.resp h addr Responder’s IP address
id.resp p port Responder’s port number
proto transport proto Transport layer protocol of the connection (TCP,

UDP, ICMP)
service string Application protocol being sent over the connec-

tion (HTTP, FTP, DNS, etc)
duration interval Duration of the connection
orig bytes count Number of payload bytes the originator sent
resp bytes count Number of payload bytes the responder sent
conn state string State of connection (see Table 2.2)
local orig bool True if connection originated locally or false if

originated remotely
missed bytes count Number of bytes missed in content gaps or

packet loss
history string Records state history of connections as a string

of letters (see Table 2.3)
orig pkts count Number of packets sent by originator
orig ip bytes count Number of IP level bytes sent by originator

(taken from IP total length header field)
resp pkts count Number of packets sent by responder
resp ip bytes count Number of IP level bytes sent by responder

(taken from IP total length header field)
tunnel parents set[string] Set of uids if connection was over a tunnel
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Table 2.2. Bro conn state Meanings [2]

conn state Meaning
S0 Connection attempt seen, no reply.
S1 Connection established, not terminated.
SF Normal establishment and termination. Note that this is the same

symbol as for state S1. You can tell the two apart because for S1
there will not be any byte counts in the summary, while for SF there
will be.

REJ Connection attempt rejected.
S2 Connection established and close attempt by originator seen (but no

reply from responder).
S3 Connection established and close attempt by responder seen (but no

reply from originator).
RSTO Connection established, originator aborted (sent a RST).
RSTR Established, responder aborted.
RSTOS0 Originator sent a SYN followed by a RST, we never saw a SYN ACK

from the responder.
RSTRH Responder sent a SYN ACK followed by a RST, we never saw a SYN

from the (purported) originator.
SH Originator sent a SYN followed by a FIN, we never saw a SYN ACK

from the responder (hence the connection was half open).
SHR Responder sent a SYN ACK followed by a FIN, we never saw a SYN

from the originator.
OTH No SYN seen, just midstream traffic (a partial connection that was

not later closed).

nection seen by Bro. Features from the conn.log are used in the machine learning ex-

periments in this thesis, therefore a complete description of it’s contents is warranted.

The fields of the default conn.log are presented in Table 2.1. Further explanation of

the conn state and history fields are presented in Tables 2.2 and 2.3, respectively.

2.3 Intrusion Detection Methodologies

The NIST classifies common detection methodologies as signature-based detec-

tion, anomaly-based detection, and stateful protocol analysis [40]. Synonymous to

signature-based, misuse-detection is common terminology in intrusion detection liter-

ature and will be the terminology used in this thesis. All methods can be “stateful”,
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Table 2.3. Bro history Meanings [2]

Letter Meaning
s a SYN w/o the ACK bit set
h a SYN+ACK (“handshake”)
a a pure ACK
d packet with payload (“data”)
f packet with FIN bit set
r packet with RST bit set
c packet with a bad checksum
i inconsistent flags in packet

therefore protocol analysis is considered independently. A stateful IDS uses memory

to store the state of the environment being observed, allowing state to aid the detec-

tion criteria rather than acting on each individual observance alone. For example, a

stateful NIDS is capable of detecting threats across multiple packets rather than just

one individual packet. This is implemented to assist detection of fragmented attacks,

a common IDS evasion technique used by attackers. Hybrid detection methods that

combine the use of misuse and anomaly detection are covered in [16]. These four

methods are discussed in detail in the following sections.

2.3.1 Misuse Detection.

Misuse detection relies on signatures that correspond to a known vulnerability

or threat. A NIDS employing misuse detection will compare network traffic, each

individual packet, to a database of signatures producing an alert when there is a

match. Systems that use misuse detection are effective at detecting known threats

when a corresponding signature is available. Misuse detection is not well suited to

detect unknown threats, such as a zero-day attack, or even a variation of known

threats. High detection rates with low false positive rates are achievable with a set of

well-designed signatures. Snort [5] is the leading open-source misuse detection IDS

and is covered in more detail in Section 2.2.1.
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2.3.2 Anomaly-Based Detection.

Anomaly-based detection compares observed events to activities considered nor-

mal in order to identify significant deviations from normal [40]. A baseline of “normal”

must be captured to use as a comparison for the anomaly-based detection system.

Challenges in creating a suitable baseline include ensuring that no malicious activity

is present and the time period selected to baseline (days, weeks, or months). Activities

deviating from the baseline are considered anomalous, but are not always considered

a threat.

The primary advantage of an anomaly-based system is the ability to detect un-

known threats. One disadvantage is a high rate of false positives, due to the engineer-

ing decisions made selecting thresholds for alerts. Another disadvantage is the lack

of information provided to an analyst from an alert from an anomaly-based system.

In a misuse detection system, analysts can see the signature that caused the alert

and compare it to the suspect packet(s). The signature of an anomaly-based system

typically relies on statistical methods comparing multiple features that will not be

as easy for an analyst to decipher. Anomaly-based alerts typically require more time

and expertise to investigate [?].

2.3.3 Stateful Protocol Analysis.

Stateful protocol analysis, sometimes referred to as “deep packet inspection”,

compares profiles of acceptable protocol activity for each protocol to observed events

to identify deviations [40]. This differs from anomaly-based detection as the focus

is on specific protocols rather than network features. Bro [34] is a network security

framework that uses protocol analyzers and was covered in detail in Section 2.2.2.
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2.3.4 Hybrid Detection.

Hybrid detection methods involve the use of misuse-based and anomaly-based

detection with the intent of capitalizing on the benefits of the combined approach.

Engineering a solution that maintains the lower false positive rate of misuse detection

with the ability to detect unknown threats of anomaly detection could drastically

improve the security posture of our networks. Four methods of combining misuse and

anomaly detection are misuse-anomaly, anomaly-misuse, parallel, and complex [16,

48, 49]. These hybrid methods are presented in the following sections.

The following sections contains a common use of terms and set notation as pre-

sented in [16]. Cyber audit data is represented by set X. Au and An are un-

known and normal output from the anomaly detection system, with the properties:

Au ∪ An = X,Au ∩ An = ∅. Mi and Mu are the intrusive and unknown output from

the misuse detection system, with the properties: Mi ∪Mu = X,Mi ∩Mu = ∅. A

detailed description that further breaks each subset into a confusion matrix of true

and false positives, and true and false negatives based on known ground truth data

can be found in [16, 44].

2.3.4.1 Anomaly-Misuse.

A detection system using the anomaly-misuse serial combination will classify with

the anomaly detector first and forward unknown output to the misuse detector. The

anomaly-misuse system provides three subsets of X: An, Au ∩Mi, and Au ∩Mu, as

shown in Figure 2.4, that represent normal, intrusive, and unqualified classes respec-

tively [44]. Intuitively, the intrusive class, Au∩Mi, contains items that both detectors

alerted on and a higher true positive rate is expected for this subset over either de-

tector used independently. Intuitively, the unqualified class, Au ∩Mu, contains items

the anomaly and misuse detectors classified as unknown, possibly requiring further
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investigation from an analyst. Because An is not sent to the misuse detector, this

system should have an anomaly detector with a high accuracy rate of the normal

class.

Anomaly 
detection

Misuse 
detection

X Au

An

Au ∩ Mu 

Au ∩ Mi

Figure 2.4. Anomaly-Misuse Detection System Workflow [16, 44]

Tombini et al. [44] applied an anomaly-misuse detection system to HTTP traffic

resulting in a reduction of 94.25% in log entries (alerts) in the unqualified class when

filtering through the anomaly detector compared to using the misuse detector alone.

This represents a drastic reduction in unqualified alerts that require investigation

from an analyst. Qualitative results are presented showing a combined reduction of

94.52% in unqualified and intrusive classes explaining that a majority of the filtered

intrusive class were likely to be false positives from the misuse detector based on

the severity levels of the alerts. Ground truth data was unavailable to confirm the

qualitative results.

2.3.4.2 Misuse-Anomaly.

A detection system using the misuse-anomaly serial combination will classify with

the misuse detector first and forward unknown output to the anomaly detector. The

misuse-anomaly system provides three subsets of X: Mi, Mu ∩ An, and Mu ∩ Au, as

shown in Figure 2.5, that represent intrusive, uknown-normal, and unqualified classes

respectively. Intuitively, the unknown-normal class, Mu∩An, contains items that the

misuse detector classified as unknown and the anomaly detector classified as normal.

While still requiring investigation from an analyst, the items in the unknown-normal
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class would be a lower priority than the unqualified class, Mu ∩ Au, discussed in the

previous section.

Misuse 
detection

Anomaly 
detection

X Mu

Mi

Mu ∩ Au 

Mu ∩ An 

Figure 2.5. Misuse-Anomaly Detection System Workflow [16, 49]

Zhang et al. [48, 49] applied a random-forests-based misuse-anomaly detection

system to the KDD’99 dataset resulting in a detection rate of 94.7% with a false

positive rate of 2% compared to the misuse detection used independently achieving a

detection rate of 94.2% with a false positive rate of 1.1%. The anomaly detection used

independently achieved a detection rate of 65% with a false positive rate of 1%. This

research concluded that the misuse-anomaly detection system did detect intrusions

missed by the misuse approach with minor increase in false positives.

2.3.4.3 Parallel.

A detection system using a parallel configuration will classify all cyber audit data

with an anomaly detector and a misuse detector independently. Initially, the outputs

Au, An, Mi, and Mu are created as each detector classifies audit data. A correlation

function, called resolver(), produces subsets An∩Mi, An∩Mu, Au∩Mi, and Au∩Mu as

shown in Figure 2.6. Intuitively, sets An∩Mu and Au∩Mi represent instances where

both detectors support the other and higher detection rates for normal and intrusive

items should be expected. On the other hand, sets An ∩Mi and Au ∩Mu represent

instances where the two detectors disagree, requiring an analyst to investigate. An

advantage to the parallel configuration is that all subsets of results can be further

analyzed compared to how anomaly-misuse does not classify instances in An with
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Figure 2.6. Parallel Detection System Workflow [16]

the misuse detector and how misuse-anomaly does not classify Mi with the anomaly

detector. Any false negatives in these two subsets have no chance of being discovered

by the other detection method. On the other hand, showing all cyber audit data to

both detectors could be viewed as a processing disadvantage.

2.3.4.4 Complex.

Complex detection systems use a combination of misuse and anomaly detection

but do not exactly fit the structure of anomaly-misuse, misuse-anomaly, or paral-

lel [16]. Examples include the use of multiple machine learning classifiers as the

misuse and/or the anomaly detector, producing more combinations of sets and sub-

sets of intrusive, normal, and unknown instances beyond what was presented in the

previous sections.

2.4 Machine Learning and Intrusion Detection

Machine learning is a multidisciplinary field that utilizes knowledge from the fields

of artificial intelligence, statistics, computational complexity theory, control theory,

information theory, philosophy, psychology, neurobiology, and others [29]. Machine

learning focuses on learning algorithms that build models from data that can then

be used to make decisions or predictions. Thus, machine learning can be considered
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a data-driven method of knowledge discovery.

Machine learning algorithms are generally categorized as supervised or unsuper-

vised based on the method used to train the algorithm. In supervised learning, labeled

data in the form of instances are supplied to the algorithm to train with. The algo-

rithm builds a model based on the features that correspond to the labeled instances.

The labels are also known as classes. In unsupervised learning, the data supplied to

the algorithm for training is not labeled. Instead, the unsupervised learning algorithm

finds patterns or structure within the data to develop categories, or clusters, that can

then be used to make decisions or predictions. More than one type of algorithm can be

applied to a problem, for example, a clustering algorithm (unsupervised) can be used

to label an unlabled dataset that a classification algorithm (supervised) then uses to

train with. The experiments in this thesis use only supervised learning algorithms,

but many types of algorithms are discussed in the following sections.

Machine learning has been applied more generally in the classification of network

traffic and more specifically to classifying threats within network traffic. General

network traffic classification has many purposes ranging from network planning and

provisioning to maintaining Quality of Service (QoS) levels for customers. Network

threat detection classification specifically focuses on identifying malicious network

traffic. The following sections discuss relevant research in both of these areas.

2.4.1 General Network Traffic Classification.

Traditionally, network traffic was classified based on the set of assigned and ‘well-

known’ port numbers. Moore and Papagiannaki [31] demonstrate that recent trends

in port assignment and usage result in no better than 70% classification accuracy

using the traditional port-based classification methods. Initally, this led to the use

of statistical traffic properties and ultimately to the application of machine learning
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algorithms to classify network traffic.

In order to generalize network traffic using machine learning, the first step is to

extract features to represent the network traffic. Features can be extracted at the

packet-level, but are more commonly extracted at the connection-level. Connections,

sometimes referred to as flows, consist of one or more packets and represent a session

between two hosts for a connection-oriented protocol such as TCP. For connectionless

protocols, such as UDP, connections can contain packets to and from the same hosts

for a specified duration.

Moore et al. [30] present a comprehensive list of 249 discriminators (features) to

use in flow-based classification applications. All features are extracted from packet

header information from the packets within a connection. Therefore, each connection

represents an instance with 249 features. Statistical features include means, variances,

standard deviations, minimums, maximiums, and quartile measures for connection-

level data such as byte counts, packet inter-arrival times, TCP flag counts, and more.

Nguyen and Armitage [33] present a survey of 17 machine learning research papers

focused on the general classification of network traffic. Supervised, unsupervised, and

combined approaches are discussed which use various machine learning algorithms and

feature sets to conduct experiments on many different datasets. High accuracy (up

to 99%) is reported for many offline analysis and a focus for real-time analysis is now

trending. A full review of these methods is beyond the scope of this thesis. The intent

of this section is to document the related field of general network traffic classification

and provide resources to the reader.

2.4.2 Network Threat Detection Classification.

This section discusses the use of machine learning classifiers specific to the appli-

cation of network threat detection. First, common datasets problems are discussed.

20



Then a discussion of semantics relating to anomaly detection and threat classification

is presented. Finally, a collection of related work is reviewed.

2.4.2.1 Datasets.

Machine learning research in classification of network threats is similar to general

network traffic classification and commonly uses similar connection-level features.

One difference is requirement for data that contains attacks along with normal traffic.

There is a lack of standard datasets or methods to create data to be used in network

threat detection research. The commonly used datasets are considered “no longer

adequate for any current study” [41], leaving many researchers to produce their own

data to conduct experiments that are not easily compared to research performed by

others.

A prominent dataset used in IDS research is a synthetic dataset created by MIT’s

Lincoln Laboratory with sponsorship by the Defense Advanced Research Project

Agency (DARPA) and the Air Force Research Laboratory (AFRL) [28]. Shortcom-

ings of the DARPA ’98 and ’99 datasets and the methods used to create the synthetic

network data have been presented by Mahoney and Chan [25] and McHugh [26].

The KDD’99 dataset was derived from the DARPA ’98 dataset for the International

Knowledge Discovery and Data Mining competition [17] by processing the raw tcp-

dump data into instances of connections represented by 41 features each. While

inheriting some of the same criticism as the DARPA datasets, the KDD’99 dataset

is the most widely used among IDS researchers. The recently released Kyoto2006+

dataset was created from three years of data (2006-2008) collected from a honeypot

at Kyoto University [42]. The Kyoto2006+ dataset attempts to solve the synthetic

and out-of-date problems associated with the KDD’99 dataset.
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2.4.2.2 Anomaly Detection vs Threat Classification.

It is important to discuss the difference between anomaly detection and other

machine learning classification approaches to intrusion detection as the terms are often

used interchangeably when, perhaps, they should not be. Symons and Beaver [43]

factor the intermixing of terms to the common use of clustering, an unsupervised

machine learning approach, to the anomaly detection problem. Normal instances are

clustered, then outliers are identified as anomalous.

Sommer and Paxson [41] relate outlier detection of this manner to a “closed world”

approach where outliers are assumed to belong to the negative class and consider this

as a primary challenge for the application of machine learning to intrusion detection.

The authors continue to explain that domains in which machine learning has been

applied successfully rely on true classification problems, using samples of positive and

negative classes to train a learner. Finally, the authors suggest that machine learning

would be better suited for finding variations of known attacks rather than discovering

unknown attacks.

Symons and Beaver [43] argue the semantics of variations of known attacks versus

unknown attacks or previously unseen attacks presented by Sommer and Paxson [41],

taking the view that normal traffic can be completely different from anything pre-

viously seen and that previously unseen attacks may not appear anomalous in the

original feature space, but may in fact have distinguishing features that are more

similar to known attacks than normal traffic. Their argument is concluded by sug-

gesting the problem is finding the right view, the appropriate expert-derived feature

set, through which these distinctions can be made.

This thesis adopts the assumptions of Symons and Beaver [43] on the topic of

classifying unknown threats. The supervised algorithms used in the experiments

presented in Chapter III are trained with a set of features which the classifier uses to
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develop a feature space used to make classification decisions. The developed feature

space may resemble that of the original feature space, such as in a decision tree, or

it may not resemble the original feature space at all, such as in a neural network.

The similarity between a known threat, one which the system has seen, versus an

unknown threat, one which the system has not seen, is not simply a variation of the

known threat in the original feature set observed by a human analyst, but a similarity

in a feature space of the classifier, which was derived from the original feature set

by the machine learning algorithm. This similarity in feature space may or may not

represent a variation of a known attack or a completely novel attack in terms of the

original feature space which a human analyst works with.

There is no common definition of unknown threats with respect to machine learn-

ing classifiers and intrusion detection. There is no common method to evaluate a

classifier’s ability to detect unknown threats. This property is arguably the most

important measure to consider for a classifier used as an IDS and because of this,

an experiment and evaluation method is presented in Chapter III in an attempt to

address this issue.

2.4.2.3 Related Work.

Beaver et al. [12] developed a system with the objectives of complementing a

signature-based IDS, detecting attacks previously unseen by the system, while demon-

strating a high detection and low false positive rate. A boosted decision tree algo-

rithm, using Adaptive Boosting (AdaBoost), was tested alongside a signature-based

sensor on a self-created dataset comprised of 40 features similar to those from the

DARPA 1999 KDD dataset. A penetration test team conducted various attacks, some

of which the system was not trained for. The machine learning system detected 82%

of the attacks missed by the signature-based system and 89% of the attacks which it
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had not been trained. The overall detection rate of the machine learning sensor was

94% with a false positive rate of 1.8%. While the authors demonstrate the usefulness

of a hybrid architecture, the complete methodology used to create unknown attacks

is not disclosed, leaving the audience to question whether the method of selecting

unknown attacks for the experiments was comprehensive enough to validate the re-

sults. Unknown attacks with similar features, in the classifier’s feature space, to the

attacks which the system was trained could have been used which would lead to high

detection rates. The comprehensive unknown threat detection method, such as the

one presented in this thesis, would better support such results.

Symons and Beaver [43] address the challenge of training an IDS in-situ, in the

environment of intended use, by comparing two semi-supervised machine algorithms,

Laplacian Eigenmap (LEM) and Laplacian Regularized Least Squares (RLS), to a

signature-based system, a linear Support Vector Machine (SVM) classifier, and a

maximum entropy classifier. The Kyoto2006+ dataset, which has instances of known

and unknown attacks, was used in this research. The authors demonstrate the advan-

tage of the Laplacian RLS algorithm, compared to the other algorithms, when using

small training sets. The Lapalacian RLS is also shown to perform well when detecting

unknown attacks, detecting 397 of the 398 unknown attacks with a false positive rate

of 0.01619. The unknown attack detection capabilities of the other machine learn-

ing algorithms are not presented in this research. While comparisons are made to a

signature-based system, the combined results and value of a hybrid configuration are

not discussed in the research.

A summary of the reviewed literature for machine learning methods used in net-

work threat detection is presented in Table 2.4. The algorithm and dataset used is

included along with whether a hybrid architecture and unknown threats were consid-

ered.
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Table 2.4. Summary of Related Work

Author(s) Algorithm(s) Dataset Hybrid Unk Threats

Zhang et al. [49] Random Forests KDD ’99 X
Beaver et al. [12] AdaBoost Decision Tree Self-Created X X

Symons and Beaver [43] Laplacian Eignenmap Kyoto2006+ X
Laplacian RLS

Linear SVM

Maximum Entropy

2.5 Classifiers

Many machine learning classifier algorithms have been applied to the intrusion

detection problem. In the limited scope of this thesis, five algorithms along with

two boosted variations will be compared. The Waikato Environment for Knowledge

Analysis (WEKA) machine learning suite from the University of Waikato [21] is used

to conduct the experiments for this thesis. All of the algorithms used in this research

are supervised machine learning algorithms which utilize labeled training data to

construct models used to make classification decisions. The following sections will

provide the necessary background and relevant WEKA-specific implementations for

each of the algorithms used in this research.

2.5.1 Bayesian Network.

Bayesian classifiers are probabilistic and produce probability estimates rather than

hard classifications when making classification decisions [46]. Näıve Bayes, a com-

monly used Bayesian classifier, uses a joint probabilistic model which assumes inde-

pendence among features. While Näıve Bayes is often successful, assuming indepen-

dence among features is not always possible, which is when a more general Bayesian

Network is preferred. Bayesian Networks are a network of nodes, one node for each

feature, connected by directed edges such that there are no cycles, a directed acyclic

graph. The connections between nodes represent conditional probabilistic properties

25



between features. Within each node is a table which defines a probability distribution

that is used to produce probability estimates when classifying new instances.

2.5.2 Instance-Based Learner (IBk).

Instance-based learners generate predictions by comparing instances to be classi-

fied to the set of saved instances rather than using a set of abstractions of specific-

instances as a model [9]. The classification decision matches the classification of the

closest matching instance in the test set. Instance-based learners are considered lazy

algorithms since a model is not built causing the computational expense to occur

during classification. IBk is an intance-based learner in WEKA that uses a k-nearest

neighbor classifier to determine the closest matching instance with a Euclidean dis-

tance function [46].

2.5.3 Sequential Minimal Optimization (SMO).

Sequential Minimal Optimization (SMO) is a training algorithm applied to a Sup-

port Vector Machine (SVM) [35]. An SVM algorithm is used for two-class classifica-

tion problems [13]. Input vectors are non-linearly mapped to a highly dimensional

feature space and a linear decision surface is created, separating the two classes.

The dimensionality of the feature space is defined by the kernel function selected

for use in the SVM algorithm. Linear or polynomial kernel functions can be used.

In a two-dimension space, a line would be created to represent the decision barrier

while the algorithm seeks to maximize distance from the line for the instances of

each class. The instances closest to the decision barrier are called support vectors. In

multi-dimension space, the decision barrier is represented by a hyperplane. SVMs can

also be used for multi-classification problems by splitting the problem into multiple

two-class classification problems and applying an SVM to each subproblem.
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The mathematical problem of calculating the optimal hyperplane to use in an SVM

is a very large quadratic programming optimization problem [35]. SMO breaks this

quadratic problem into a series of the smallest possible quadratic problems, keeping

the training process between the linear to quadratic range with regards to the training

set size, where the standard SVM algorithm training process falls between the linear

to cubic range with regards to the training set size. WEKA utilizes the SMO training

process for its SVM implementation.

2.5.4 Decision Trees.

C4.5 is a popular open-source decision tree algorithm developed and improved

by Quinlan [37, 36]. A tree structure is produced such that each node represents

a decision that corresponds to a specific feature and each leaf node represents a

classification decision. Each instance to be classified begins at the root node and

traverses down the tree until reaching a leaf node where the classification decision is

made. A pruning process is used to reduce the overall size of the decision tree and

to reduce the chance of overfitting, a problem that occurs when too many branches

are created to represent the training set that ends up not generalizing well with test

data.

WEKA’s implementation of the C4.5 algorithm is called J48, which implements a

later, slightly improved, version of C4.5 before the release of the proprietary version

C5.0 [46]. J48 is implemented in Java rather than C, explaining the use of J rather

than C in the algorithm’s name.

2.5.5 Artificial Neural Networks (ANNs).

Artificial Neural Networks (ANNs) are inspired by biological learning systems

comprised of complex networks of interconnected neurons [29]. A set of inputs, the
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values of features for each instance, are connected to hidden layers of nodes, which

are connected to specific outputs, representing the classes in a classification problem.

Each connection is a weighted function that is updated with a training process which

maps the input features to the labelled output. The network is trained on multiple

iterations of the training data, updating the weight on each iteration until a suitable

model is constructed.

WEKA’s Multilayer Perceptron (MLP) is an ANN which uses backpropagation

for training and allows the user to select the number of hidden layers, training cycles,

and other parameters [46].

2.5.6 Boosting Algorithms.

Boosting algorithms are applied to reduce errors of a weak learning algorithm,

whose performance is a little better than random guessing [19]. This is accomplished

by running the weak learner multiple times over the training data and combining the

resulting models from the weak classifier into a combined composite classifier.

WEKA implements the AdaBoost.M1 algorithm which assigns weights to each

training instance during each iteration of the boosting algorithm [46]. Instances re-

ceive an equal weight for the first iteration, then the weights decrease or increase for

correctly and incorrectly classified instances, respectively. This leaves “easy” to clas-

sify instances with a low weight and “hard” to classify instances with a high weight.

Subsequent iterations of the AdaBoost.M1 algorithm focus on correctly classifying

the hard to classify instances, ultimately producing a model with reduced error.

2.6 Summary

In summary, this chapter provided a background of IDS technologies, reviewing

the architecture and processes of Snort and Bro. IDS methodologies were discussed in
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detail, including the various hybrid IDS configurations. A review of machine learning

research applied to general network traffic classification and network threat detection

classificiation was presented. Finally, the necessary background on the classifiers used

in the experiments of this thesis was provided.
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III. Methodology

3.1 Chapter Overview

This chapter explains the methodology used in this thesis. The first section de-

scribes a proposed system architecture which encompasses the methodology used.

Next, a description of the dataset used in the experiments is provided. The chapter

then discusses the network sensor configuration. The data preprocessing steps are

then presented, followed by the classifier configuration. The chapter then explains

the machine learning experiments conducted and the performance metrics used for

evaluation. Finally, the chapter concludes with the development of a Value-Focused

Thinking (VFT) hierarchy to be used for classifier evaluation.

3.2 Proposed System

This research proposes a multi-modality hybrid IDS which uses a packet-level

signature-based IDS and a connection-level machine learning threat classifier system.

The proposed architecture is provided in Figure 3.1. Network sensor data is classified

at the packet-level by the signature-based IDS and also sent to extract connection-

level features. In the online process, the connection-level features would be classified

by the trained threat classifier(s), then passed to the resolver. The resolver would cor-

relate packet-level alerts to connections, then produce the desired subsets previously

discussed in Section 2.3.4 for the analyst to review.

Dua and Du [16] mention the lack of details of the resolver presented by Anderson

et al. [10]. A possible implementation in this proposed architecture is to first correlate

the packet-based alerts from the signature-based IDS to the connections identified by

the connection-level feature extraction, then create a normal and alert set for each

classifier, including Snort. Any desired subset combination, for multiple classifiers,
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Figure 3.1. Proposed System Architecture

can then be produced from the resolver using simple set operations.

The offline portion illustrates the correlation and labeling process used to create

training datasets for the threat classifiers. The shaded components are not addressed

in this research, but are provided here as a possible mitigation for the assumption of

training classifiers with data that is not labeled with ground truth. The idea being

that a human analyst will review and update the training data with ground truth

prior to training classifiers. The details specific to each component are covered in the

rest of this chapter.

3.3 Dataset Description

As discussed in Chapter II, datasets are among the challenges in IDS research.

The data used in this research comes from the Cyber Defense Exercise (CDX), an

annual cyberwarfare exercise sponsored by the US National Security Agency (NSA).

The network environment and situation in which this dataset originated can be found

in [32]. The CDX is an annual competition between military service schools including
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the US Military Academy at West Point, US Air Force Academy, Naval Postgraduate

School (NPS), US Naval Academy, US Coast Guard Academy, US Merchant Marine

Academy, and the Air Force Institute of Technology (AFIT). During the competition,

students, as the “blue team”, were tasked to defend similar suites of network equip-

ment and services against attacks. Attacks came from the “red team” which was

comprised of highly trained practitioners from the NSA, the Air Force Information

Warfare Center, the Navy Information Operations Center, the Army’s 1st Information

Operations Command, the Marine Corps Network Operation Center, and the Army

Reserve Information Operations Command. The “red team” was able to exploit the

“blue team” networks with any open source or publicly available means they desired,

leading to a high variation of attack methods from a reputable team of attackers.

The specific data used in this research is the network traffic collected from AFIT’s

network during the CDX, as represented in Figure 3.2. All inbound and outbound

network traffic was collected in libpcap format using TCPDump. Data was available

for years 2003 through 2007, and 2009. Table 3.1 shows the yearly breakout including

the total size (in MB) and number of packets collected per year. Having data that

spans six years provides the ability to analyze changes in attack methods over time,

making it less restrictive than a dataset of a lesser time span.

Table 3.1. CDX Data Set Description by Year

2003 2004 2005 2006 2007 2009 Total

Size (MB) 1,639 712 704 411 931 502 4,899

Packets 5,861,337 2,888,609 1,609,533 1,130,422 10,452,163 1,808,471 23,750,535

3.4 Network Sensor

The network sensor selected for this research is Security Onion, a Linux distri-

bution that is preloaded with many network security applications. The two primary
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applications used in this research are Bro and Snort. Bro is used to extract connection-

level features through the use of the default logs it produces along with additional

customized logs. Snort is used to identify packet-level threats. The following briefly

explains the configurations of the sensor. A detailed explanation of the configuration

process can be found in Appendix B.
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The sensor is setup on a virtual machine, such that network traffic can be replayed

over the sensor. Security Onion has a built-in setup application for selecting the

applications for the sensor and the rule sets to load for the signature-based IDS. Snort

is selected as the IDS engine using the “VRT and ET No/GPL” rule set. The total

rule count in the set is 21,641. This amount of rules is acceptable for this controlled

research experiment, but it is recommended to prune the rule set to 7,000 rules or less

in an operational deployment of Security Onion. Because the CDX dataset is from

2003-2009, an assumption is made that the current Snort rule set will identify all of

the attacks. Automatic rule updates are disabled to preserve the rule set throughout

the experiment.

Table 3.2. Unified2 Log Entry Fields [6]

Field Description

ts Timestamp of alert

id.src ip Source IP of the packet that generated the event

id.src p Source port of the packet that generated the event

id.dst ip Destination IP of the packet that generated the event

id.dst p Destination port of the packet that generated the event

sensor id Unique identifier of sensor

signature id Signature ID of the alerting rule, as specified by the sid key-
word

signature Signature message string

generator id Generator ID of the alerting rule, as specified by the gid key-
word

generator String description of Snort generator

signature revision Revision number of signature

classification id Classification ID as mapped in the file classifications.conf

classification String description of Snort classification

priority id Priority of the rule as mapped in the file classifications.conf or
overridden by priority keyword

event id Unique identifier for each Unified2 event

packet Raw packet data up to specified byte amount
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Snort is configured to output alerts in the Unified2 format, a binary output option

which is easily processed into Bro, maintaining consistency between Snort and Bro

log files. The fields of the Unified2 alert log entries are shown in Table 3.2. These

fields for each alert will be used later for correlating packet-level alerts to connections.

Bro is used to extract connection-level features from the network traffic. In ad-

dition to the features in the conn.log described in Table 2.1, Bro is configured to

output additional connection-level features shown in Table 3.3. The additional fea-

tures are derived from the conn.log features. The initial goal was to have Bro output

a large set of features as discussed in [30]. Bro’s source code revealed a limitation by

recommending the use of connection-level features versus packet-level features. Bro

is unable to process events triggered for every packet even at medium level network

bandwidths [2].

Table 3.3. Addtional Connection Log Features

Feature Data Type Description

end ts time Connection finish timestamp

port service count Service identified by port (used when no service
detected by protocol analysis)

total bytes count Total number of payload bytes (transport layer)

history (x16) bool 16 boolean fields added to represent each possi-
ble character in conn.log history field

mean data ip orig count Mean size (bytes) of packets sent by originator

mean data ip resp count Mean size (bytes) of packets sent by responder

total pkts count Total number of packets in connection

total ip bytes count Total number of IP layer bytes in connection

mean data ip count Mean size (bytes) of all packets in connection

avg throughput double Average throughput of connection calculated by
total ip bytes divided by duration
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3.5 Data Preprocessing

Data preprocessing includes all necessary actions to get the transform the raw

network packet capture data into data ready to be processed by the threat classifiers.

The steps include processing the packet capture data through the network sensor,

connection-level threat labeling, data cleansing, and data balancing. These steps

along with the final dataset descriptions are presented in this section.

3.5.1 Processing Network Packet Capture Data.

Tcpreplay is used to replay the network traffic over the network sniffing interface

that was configured during the Security Onion setup. Tcpreplay has options available

to control the speed at which packets are transmitted over the selected interface. This

is important in the configuration used for this research to ensure that all packets are

processed by Snort which is loaded with a large rule set. It was previously mentioned

that the recommended size of the rule set is 7,000 or less and this configuration is

using 21,641. In order to use the large rule set without packet loss in Snort, packets

were replayed at the rate of 100 packets per second. The output of this process can

be seen in Figure 3.3. Some of the files processed were removed from the output to

rich@rich-security-onion:~$ sudo tcpreplay --pps=100 --intf1=eth1 ~/Desktop/CDX_Data/all_years/*

sending out eth1

processing file: /home/rich/Desktop/CDX_Data/all_years/04-20-2009_wholecapture

processing file: /home/rich/Desktop/CDX_Data/all_years/04-21-2009_wholecapture

<snip>

processing file: /home/rich/Desktop/CDX_Data/all_years/Thursday_2005

processing file: /home/rich/Desktop/CDX_Data/all_years/Wednesday_2005

Actual: 23750535 packets (4527400338 bytes) sent in 262061.68 seconds

Rated: 17276.1 bps, 0.13 Mbps, 90.63 pps

Statistics for network device: eth1

Attempted packets: 23750535

Successful packets: 23750535

Failed packets: 0

Retried packets (ENOBUFS): 0

Retried packets (EAGAIN): 0

rich@rich-security-onion:~$

Figure 3.3. Example tcpreplay Output
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save space, otherwise the results are presented as processed. The total time taken to

replay the data at the slower rate was 262,061.68 seconds, approximately 72.8 hours.

The output of tcpreplay indicates that all packets were processed over the inter-

face, but this does not indicate whether or not Bro and Snort was able process each

packet. To verify all packets were processed by Snort and Bro, a combination of log

files from Security Onion, Snort, and Bro were examined. Once it is confirmed that

each application processed all of the data, the log files from each system are retained.

Snort generated 732,709 packet-level alerts from the CDX data, 3.085% of the

total number of packets. Figure 3.4 shows the breakout of alerts across 16 of the

default alert classifications. Almost half of the alerts reside in the “bad-unknown”

class, while “attempted-recon”, “suspicious-filename-detect”, and “suspicious-login”
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Figure 3.5. CDX Data Packet-Level Alert Priority Metrics

classes are well represented as well. The default alert classifications are mapped to

alert priorities in Snort. Figure 3.5 shows a breakout of the alerts by priority from

Snort, with the majority of the alerts being medium priority, followed by high, then

low priorities. Lastly, there were 169 unique Snort signatures triggered from the CDX

data.

Bro generated 3,841,291 connections from the CDX data. Figure 3.6 shows the

breakout of connections by service. Services were identified by the service field of the

conn.log when available and defaulted to the port service field when not available.

The top ten TCP services are shown along with ICMP and UDP. The tcp.other cate-

gory represents identified services that were not in the top ten, while the tcp.unknown

category represents unidentified services. The high numbers in these categories are

attributed to the nature of the dataset and the high number of port scans that were

observed.
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Figure 3.6. CDX Data Connections by Service

3.5.2 Connection-Level Threat Labeling.

Correlating alerts to connections was completed by creating a dictionary contain-

ing all alerts, then performing lookups in the dictionary for each connection to check

for associated alerts. A dictionary is the Python implementation of hash tables which

use key-value pairs to perform fast searches using hashes of the keys, maintaining a

performance of O(1) for lookups. Using a hash table data structure the performance

of the correlating alerts to connections is O(n), where n is the number of connections.

This was valuable when working with large log files of connections and alerts.

The algorithm used to create a dictionary of the alerts in the unified2.log produced

by Snort is presented in Figure 3.7. Every alert in the unified2.log is processed through

the algorithm and added to the dictionary. In line 2, a frozenset of the network tuple

is used as the key. Each connection entry is formatted so the initiating host is the

source, while source and destination in Snort alerts are logged as sender and receiver
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Input: unified2.log
Output: unified2 dict

1: for alert in unified2.log do
2: key ← frozenset(src ip, src p, dst ip, dst p)
3: value ← [ts, event id]
4: if key not in unified2 dict then
5: unified2 dict[key] ← ∅
6: end if
7: unified2 dict[key].append(value)
8: end for
9: return unified2 dict

Figure 3.7. Alert Dictionary Algorithm

for the packet that caused the alert. This leads to situations where the source and

destination in a connection entry are reversed from the Snort alert, but they should be

correlated. A set was chosen to allow for this comparison to occur without requiring

multiple searches in the dictionary. A frozenset is a Python-specific, hashable version

of set that can be used as a key in dictionaries. The value is set in line 3 as a list

containing the timestamp of the alert (ts) and the unique event identifier (event id).

Lines 4-6 create an empty list value for the key if it does not already exist in the

dictionary, resolving a possible key error. The value is then appended to the list

corresponding to the key in line 7. This creates a list of lists for each key if there are

more than one alert for a specific key. Finally, the dictionary is returned in line 9.

Once the dictionary of alerts is created, each connection in the conn features.log

can be correlated using the algorithm presented in Figure 3.8. The input to this

algorithm is the conn features.log and unified2.log that were produced through the

previously explained Bro configurations. The output will be two new log files, la-

belled conn feature.log, to be used later by the machine learning algorithms, and

unified2 conn.log, to document which connections and alerts were correlated allowing

for easy cross-referencing from the uid in the connection logs to the event ids in the

alert logs when other connection or alert-specific features may be needed. As pre-
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Input: conn features.log, unified2 dict
Output: labelled conn features.log, unified2 conn.log

1: for line in conn features.log do
2: conn id ← frozenset(orig h, orig p, resp h, id.resp p)
3: alert count ← 0
4: conn is alert ← False
5: if conn id in unified2 dict then
6: for alert in unified2 dict[conn id] do
7: if ts ≥ (start ts − 1) and ts ≤ (end ts + 1) then
8: alert count += 1
9: conn is alert ← True

10: write (uid, event id) to unified2 conn.log
11: unified2 dict[conn id].remove(alert)
12: end if
13: end for
14: end if
15: line.append(alert count, conn is alert)
16: write line to labelled conn features.log
17: end for

Figure 3.8. Connection-Alert Correlation and Labeling Algorithm

viously stated, this algorithm is used on every connection in the connection log. In

line 2, the conn id is set to a frozenset of the network tuple, similar to the method

used when creating the alert dictionary. This will be used to perform the lookups

in that dictionary. In lines 3-4, variables alert count and conn is alert are initialized.

The lookup in the alert dictionary occurs in line 5. If there is a match, the conn id

is used to reference the alert dictionary in line 6. Recall that multiple alerts may be

saved as a list of lists in each dictionary entry, therefore a for loop is used here check

each if they exist. In line 7 a timestamp condition is checked in order to correlate

the alert with the connection. The timestamp of the alert (ts) is compared to the

connection start timestamp (start ts) and the connection end timestamp (end ts) to

determine if the alert occured between the start and end of the connection. A window

of 1 second is subtracted from the start timestamp and added to the end timestamp to

account for the variation in timestamp precision between the Bro connection log and
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the Snort alert log. If the timestamp condition is met, the alert count is incremented,

conn is alert is set to True, the uid and event id is written to the unified2 conn.log,

and the alert is removed from the alert dictionary in lines 8-11. The alert count

and conn is alert variables are appended to the connection entry in line 15 and then

written to the labelled conn features.log in line 16.

After completing the correlation and labeling phase, there are 3 log files compris-

ing the entire data set used for the experiments in this research. The unified2.log,

still in the original form output from the network sensor, contains the alert infor-

mation which can be referenced individually using the unique event identifiers. The

labeled conn features.log, output from the correlation and labeling process, contains

a record of each connection with the features in Tables 2.1 and 3.3 with additional

fields representing alert count and boolean representing if the connection is an alert.

This labeled dataset is the primer for the data preprocessing phase of the machine

learning experiments. Finally, the unified2 conn.log, output from the correlation and

labeling process, allows easy cross-referencing of between the connection log and the

alert log, if needed, using the unique connection and unique alert identifiers, the uid

and event id.

The connection-alert correlation resulted in 146,531 connections containing one

or more packet-level alerts, 3.81% of the total connections. The connection-level

threats are shown by service in Figure 3.9. Figure 3.9(a) shows only the connections

containing threats while Figure 3.9(b) shows the threat and non-threat connections.

Even with a dataset collected in an environment where attacks are imminent, the ratio

of threatening connections to non-threatening connections is drastic. It is expected

that this difference is amplified in a typical operational network environment, resulting

in a larger haystack and smaller needle to search for.
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Figure 3.9. CDX Data Connection-Level Threats by Service

3.5.3 Data Cleanup.

Data cleanup, or data cleansing, is typically required to prepare data for use

with machine learning algorithms. This step generally involves removing redundant

attributes, instances with excessive missing data, and any other changes required

to format data specific to the machine learning suite being used. In this case, the

data will be reformatted into the WEKA Attribute-Relation File Format (ARFF)

and some attributes are removed. The following will explain each attribute that

was removed. The start ts and end ts attributes are removed because the data was

replayed at a constant speed which is not realistic compared to operational traffic. If

temporal relationships were to be considered, the data would need to be replayed in

actual time as it was originally transmitted. The id.orig h, id.orig p, id.resp h, and

id.resp p were removed to prevent the algorithms from making classification decisions

based on the IP and port information. This was decided due to the scenario in which

the data was collected. During the CDX, attacks commonly came from the same IP

range used by the “red team”. Using this information to make classification decisions
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would be unrealistic. All string attributes were removed except for the uid. Those

removed were service, port service, history, and tunnel parents. It is recognized that

using ports and services may be useful for threat classification, but these fields were

not used in this research because there were approximately 5,000 unique strings for

the service and port service fields, making it cumbersome to use nominal attributes.

Another method of interpreting these string fields could be pursued. As mentioned

in Section ??, the history string was parsed into 16 boolean fields to represent the

presence of TCP flags. The proto and conn state attributes were set to be nominal

attributes using the sets {tcp, udp, icmp, unknown transport} and {S0, S1, SF,

REJ, S2, S3, RSTR, RSTOS0, RSTRH, SH, SHR, OTH}, respectively. This is one

method of preserving string attributes in which the string selections are limited.

Instances with missing data were not addressed, but it should be noted that there

is an expectation for missing data depending on the protocol of the connection. For

example, a UDP connection does not have TCP flags set.

3.5.4 Dataset Subsets.

Subsets of the complete CDX dataset were created containing only the connections

specific to each layer, specifically subsets were made for the IP layer, the TCP layer,

and application layer, HTTP. The goal of testing separate datasets at different layers

of the TCP/IP stack is to test the effect on classifier performance. The hypothesis

is that the classifiers will perform better at the higher layers, such as the application

layer. For example, a classifier with the sole job of classifying HTTP traffic should

perform better than a classifier responsible for classifying all types of TCP or IP

traffic.

Separating the dataset by protocol, TCP and IP, was accomplished using the

protocol field of the conn.log. The HTTP dataset was created using the service field
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or the port service field. The specific condition used is if the service field is not

empty, then service equals the service field, else service equals the port service field.

3.5.5 Additional Features.

Datasets with additional features were used for experiments at the application

layer. The goal of testing these datasets is to test available features at the higher

layers. Introducing these features to the lower layer datasets, TCP and IP, there would

be many sparse fields that may affect classifier performance. Performing tests with

all available features at the higher layers will further demonstrate whether additional

features should be sought if threat classifiers are developed for each application layer.

Separate experiments will be conducted on the HTTP dataset with and without the

additional features to make comparisons.

The additional features used for the HTTP dataset are derived from the http.log

produced by Bro. Connections are easily correlated to these logs using the uid. All

additional features are numeric counts that were extracted from the network traffic

by Bro.

Additional HTTP features include counts of HTTP methods, request and response

body length statistics (mean, min, and max), server response status codes, and files

transferred from the client and server. Only methods and status codes found in the

CDX dataset were added as features. Request for Comments (RFC) 7231 [18], recently

replacing RFC 2616, provides details on all HTTP methods and server response status

codes. A total of 39 additional HTTP features are added to 48,220 connections.

3.5.6 Data Balancing.

Balancing the number of instances from each class is a common tactic used in

many machine learning experiments. In this research, imbalanced data was used to
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better represent the target environment, where there is much more normal traffic

available than there is threat traffic. Implications of learning with imbalanced data

are covered in detail in [23]. In this thesis, performance metrics used for evaluation

are selected to account for the use of imbalanced data as discussed in Section 3.8.

Random sampling was used to reduce the size of TCP and IP datasets. This was

necessary to save computation time. The method used was to retain all threat class

instances and use a 10% random sample of the normal class instances. A resampling

method included with WEKA was used with a class bias towards uniform distribution

of classes (to retain all threat class instances) and without replacement. The specific

WEKA method and options used for random sampling can be found in Appendix C.

3.5.7 Final Dataset Descriptions.

The final dataset descriptions are presented in Table 3.4. Each dataset will be

processed through each classifier discussed in Section 3.6 under the experiment pa-

rameters discussed in Section 3.7.

Table 3.4. Final Dataset Descriptions

Dataset Connections Normal Threat % Threat # of Features

All Network Data 384,129 237,598 146,531 38.15 34

TCP Data 343,209 197,965 145,244 42.32 34

HTTP Data 188,371 146,424 41,947 22.27 34

HTTP Data (extra features) 188,371 146,424 41,947 22.27 73

3.6 WEKA Configuration

WEKA version 3.7 was used for this research. All WEKA experiments were

performed on a 64-bit Windows 7 SP1 machine with an Intel i7-3720QM CPU (8

cores at 2.6 GHz) and 16 GB of RAM. There are multiple interfaces available in

WEKA including a graphical user interface, command line interface, and a Java
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Application Program Interface (API) to access the machine learning algorithms in

the suite. The Windows command line method was chosen to call on each machine

learning algorithm using the Java classes with available options. This allowed the

experiments to be scripted with a batch file and get the desired output files to include

classifier performance metrics, predictions, threshold information, and details about

the classifier models.

Using large datasets with WEKA requires the default memory limit, the maximum

heap size, to be increased. This was done by increasing the maxheap value in the

RunWeka.ini configuration file in the install directory. The maxheap value dedicates

the specified memory amount to the Java virtual machine when WEKA is initialized.

A value of 14,336 MB was used for the maxheap in this research, allowing multiple

experiments to run simultaneously.

There were 7 classifier types considered in this research for comparison: BayesNet,

AdaBoost.BayesNet, IBk, SMO, J48, AdaBoost.J48, and MLP. The specific Java

classes called and options used for each classifier can be found in Appendix C.

3.7 Experiments

The experiments for this research were designed for the specific application of

threat classifiers used in a hybrid IDS configuration. The ideal threat classifier in this

application will have good overall performance with regards to identifying malicious

connections versus those that are normal. The classifier should be able to identify

known threats as well as unknown threats, while minimizing the amount of false

positives and negatives. A false negative equates to a missed detection that may or

may not be detected by the misuse detector in a hybrid IDS. A false positive equates

to wasted overhead for an analyst reviewing alerts.

It should be noted that it is not possible to test for all unknown threats, as
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you cannot evaluate the unknown. We can, however, simulate unknown threats by

withholding specific samples from each classifier’s training process.

Two experiments designed to measure classifier performance in these areas are

explained in the following sections. The performance metrics discussed in Section 3.8

are used to evaluate each classifier in terms of detecting known and unknown threats

while minimizing false positives and negatives.

3.7.1 Classifier Performance.

A stratified k-fold cross-validation experiment is performed on each dataset de-

scribed in Table 3.4 using each of the classification algorithms. Stratified k-fold

cross-validation is a preferred method of testing performance of machine learning al-

gorithms [46]. A select number of folds are created, represented by k. 5-fold and

10-fold are commonly used. In this research, 10-fold is used. Using stratified cross-

validation ensures that the distribution of classes, threat and normal in this research,

is maintained across each fold.

The goal of the cross-validation experiment is to judge each classifier’s performance

in regards to correctly classifying the connections as threat or normal as labeled by

the correlation to Snort alerts. Essentially, these experiments rate each classifier’s

ability to match the output of Snort. Since Snort uses rules to detect known threats,

the results from this experiment equates to measuring the classifier’s ability to detect

known threats.

The stratified cross-validation folds used in the experiments were created using

a filter provided by WEKA, weka.filters.supervised.instance.StratifiedRemoveFolds,

where k = 10. The specific options used to build the training and test sets are

provided in Appendix C.

The training files are used to build a model using each of the tested classifiers.

48



The model is then used to classify the instances of the corresponding test file. Results

are generated for each fold of each experiment.

3.7.2 Unknown Threat Detection.

As previously noted, it is not possible to truly test a classifier’s ability to classify

the unknown. We can, however, simulate unknown by selectively withholding samples

from the dataset used to train the classifier. While others have presented unknown

threat detection metrics [12, 43] in their research, there was not a method used that

is as comprehensive as the one used in this thesis.

The unknown threat detection method used here gives every alert classification

type within every connection an opportunity to be an unknown threat. The definition

of an unknown threat for this experiment is a connection that contains a packet-level

alert with an alert classification in which the classifier has not been trained. More

specifically, the classifier has not been trained with any connections that contain that

specific alert classification.

Training and testing datasets for this experiment are developed similar to the

cross-validation method, only instead of have randomly stratified folds, folds are cre-

ated for each alert classification. The algorithm used for the creation of unknown

threat training and testing datasets is presented in Figure 3.10. The inputs are the

dataset subset, unified2.log, and unified2 conn.log (produced from correlation and

labeling algorithm in Figure 3.8). The outputs are the testing and training sets for

each alert classification for the specified dataset subset where any connection contain-

ing the packet-level alert classification being tested for that fold is withheld and all

other connections are used for training. Two dictionaries are created, using the same

method as Figure 3.7, in the format shown to allow for cross correlation of connections

to alert classifications. A class set is created to contain all alert classification types
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Input: dataset subset, unified2.log, unified2 conn.log
Output: dataset subset class-train-set, dataset subset class-test-set

1: for alert in unified2.log do
2: unified2 dict ← (event id: [classification1, classification2, ..., classificationn])
3: end for
4: for conn in unified2.log do
5: unified2 conn dict ← (uid: [event id1, event id2, ..., event idn])
6: end for
7: class set ← ∅
8: for line in dataset subset do
9: if uid in unified2 conn dict then

10: for event id in unified2 conn dict[uid] do
11: class set.add(unified2 dict[event id][classification])
12: end for
13: end if
14: end for
15: for classification in class set do
16: for line in dataset subset do
17: if uid in unified2 conn dict then
18: temp set ← ∅
19: for event id in unified2 conn dict[uid] do
20: temp set.add(unified2 dict[event id][classification])
21: if classification in temp set then
22: write line to dataset subset class-test-set
23: else
24: write line to dataset subset class-train-set
25: end if
26: end for
27: else
28: write line to dataset subset class-train-set
29: end if
30: end for
31: end for

Figure 3.10. Unknown Threat Dataset Creation Algorithm

in the dataset subset. Finally, for all classifications in the class set, correlations are

performed in the two dictionaries to select and write the appropriate connections to

the testing and training dataset files.

Since the threat classifiers operate at the connection-level and the alert classifi-

cations are at the packet-level, it is possible that multiple alert classifications exist
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within a connection. Therefore, a single connection may be withheld more than once.

Along the same lines, it is also possible that a classifier is trained with a connection

that contains a secondary alert classification which exists within a connection being

tested. The only way to overcome this issue would be to label each connection with

one and only one type of alert classification. This was not pursued in this research.

The fact that a connection can contain multiple packet-level alerts is considered a by-

product of correlating packet-level alerts to connections and this method accurately

describes a malicious connection.

Under these conditions, it is still believed that this experiment measures unknown

threat detection capability in a more stringent manner than would occur in an opera-

tional environment. Entire alert classification sets are removed together which would

not occur in an operational environment. For example, if a novel network scan, an un-

known threat, were used in the wild, operational systems would have received training

from other types of network scans. In this experiment, the system was not trained

on network scans of any type. Therefore, unknown threat detection rates presented

using this methodology are expected to be lower than those seen on an operational

system. The resulting rate should be a worst-case example, which can then be used

to improve upon.

The unknown threat testing and training datasets are subjected to the same clas-

sifier configurations used in the classifier performance experiments. Maintaining the

same classifier configurations allows for the comparison of classifer performance and

unknown threat detection performance of each algorithm.

3.8 Performance Metrics

Many metrics exist to measure the performance of classifiers and should be chosen

to best represent the specific classification problem and experiment criteria. It is

51



uncommon for a single metric to fully capture a classifier’s performance. In this

reasearch, attention was taken to select the most appropriate metrics to represent

the intended use of threat classifiers in a hybrid IDS architecture where threatening

connections are the minority and the cost of false positives and negatives are high.

The performance metrics considered in this research are confusion matrices, marginal

rates, overall rates, and precision-recall curves. A unique metric, the unknown threat

detection rate will be presented as well.

3.8.1 Confusion Matrix.

The metrics used to evaluate the performance of each classifier and fusion methods

are derived from the confusion matrix results of each fold of each experiment. Each

classifier is making a binary decision for each connection, threat or normal, so a

two-class confusion matrix is used. An example of this two-class confusion matrix is

presented in Table 3.5. The four values contained within the confusion matrix are

defined as:

• True Positive (TP): Instances that are threats which are classified as threats

• True Negative (TN): Instances that are normal which are classified as normal

• False Positive (FP): Instances that are normal, but classified as threats

• False Negative (FN): Instances that are threats, but classified as normal

All confusion matrix values are presented as the sum of the values across the folds

of each experiment. These sums represent every connection in each dataset subset.

3.8.2 Marginal Rates.

As previously mentioned, there is no single rate that can accurately depict the

performance of a classifier. Marginal rates, the rates derived from the margins of the
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Table 3.5. Two-Class Confusion Matrix Example

Classified as

Threat Normal

Actual
Threat TP FN

Normal FP TN

confusion matrix, chosen for evaluation should be selected based on the specific ex-

periment and goals of the evaluator. The metrics derived from the confusion matrices

used to compare classifiers and fusion methods are:

• Recall (True Positive Rate (TPR), sensitivity): The rate in which the classi-

fier correctly classifies threat instances. The equation for recall is shown in

Equation 3.1.

Recall =
TP

(TP + FN)
(3.1)

• Specificity (True Negative Rate (TNR)): The rate in which the classifier cor-

rectly classifies normal instances. The equation for specificity is shown in Equa-

tion 3.2.

Specificity =
TN

(FP + TN)
(3.2)

• Precision: The rate in which the classifier correctly classifies threat instances to

the rate of misclassifying normal instances as threats. The equation for precision

is shown in Equation 3.3.

Precision =
TP

(TP + FP )
(3.3)

• False Positive Rate (FPR): The rate in which the classifier mis-classifies normal

instances as threats to the rate of correctly classifying normal instances. The
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equation for FPR is shown in Equation 3.4.

FPR =
FP

(FP + TN)
(3.4)

• False Negative Rate (FNR): The rate in which the classifier mis-classifies threat

instances as normal to the rate of correctly classifying threat instances. The

equation for FNR is shown in Equation 3.5.

FNR =
FN

(TP + FN)
(3.5)

All marginal rates are presented as a sample mean, X̄, of the rates from each

fold. Equation 3.6 is used to compute sample mean, where ri is the performance rate

for each fold and k is the number of folds. A 95% Confidence Interval (CI) is also

provided with each mean rate. Equation 3.7 is used to determine the CI of each mean

rate, where σ is the standard deviation, n is the sample size, and Z is the z-score

(1.96 is used for 95% CI). The sample size ends up being equal to the number of folds.

X̄ =
r1 + r2 + ...+ rk

k
(3.6)

CI = X̄ ± Z
(
σ√
n

)
(3.7)

3.8.3 Overall Rates.

Overall rates are those rates that attempt to summarize the overall performance

of a classifier into one rate. Being that it is difficult to represent classifier performance

with one rate, there are many formulas available and each has their pros and cons.

The overall rate formulas considered in this research include:
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• Accuracy : A commonly used rate in which the classifier correctly classifies threat

and normal instances to the entire population. Accuracy is a less accurate

depiction of overall performance when the data is imbalanced as the majority

class will skew the results. For this reason, accuracy is not used as an evaluation

metric in this thesis, but is included here as it is commonly used in other

research. The equation for accuracy is shown in Equation 3.8.

Accuracy =
TP + TN

(TP + FN + FP + TN)
(3.8)

• F-Measure: The harmonic mean of precision and recall. Being that it is derived

from precision and recall, the TN class is not considered. Making it well-suited

for applications using imbalanced data where the correct classification of the

negative class is not relevant. F-Measure (Equation 3.9) allows an evaluator to

weight precision or recall by adjusting β. The commonly used F1-Score balances

precision and recall evenly. F2 weighs recall higher than precision while F0.5

weighs precision higher than recall.

Fβ = (1 + β2) · Precision ·Recall
(β2 · Precision) +Recall

(3.9)

• G-Measure: The geometric mean of precision and recall. Also derived from

precision and recall, the TN class is not considered. Similar to the F-Measure,

the G-Measure is sometimes used as a single figure of merit to measure perfor-

mance in terms of precision and recall. The equation for G-Measure is shown

in Equation 3.10.

G =
√
Precision ·Recall (3.10)
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• Matthews Correlation Coefficient (MCC): A measurement that can be applied

to a binary classification problems that includes the TN margin. While accuracy

includes all margins of a confusion matrix, it is not well suited for imbalanced

datasets. The MCC is a measure that includes all margins of the confusion ma-

trix while normalizing the two classes, making it suitable for measuring overall

performance with imbalanced datasets. The equation for MCC is shown in

Equation 3.11.

MCC =
(TP · TN)− (FP · FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(3.11)

3.8.4 Precision-Recall Curves.

Precision-recall (PR) curves are used to compare multiple classifiers over the range

of precision and recall rates at various threshold settings for each classifier. PR curves

are similar to Receiver Operating Characteristic (ROC) curves that use recall and

FPR as the axes. Davis and Goadrich [14] explain that PR curves are preferred for use

with unbalanced datasets as they provide a more informative picture of an algorithm’s

performance. The authors continue to show that a curve can only dominate in ROC

space if and only if it dominates in PR space. A comparison of two algorithms in

ROC space and PR space is presented in Figure 3.11. The optimal area of ROC

space is the upper-left corner where TPR = 1 and FPR = 0. The two algorithms

compare well in Figure 3.11(a) and appear to be close to optimal. The optimal area

of PR space is the upper-right corner where Precision = 1 and Recall = 1. When

examining the same algorithms in PR space in Figure 3.11(b), Algorithm 2 shows an

advantage while it is also evident that both algorithms are less than optimal.

This difference in ROC and PR space occurs in unbalanced datasets because ROC

space uses TNs to calculate the FPR. If the majority class is the negative class, there
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Figure 3.11. Comparing Algorithms in ROC vs PR Space [14]

will be a large amount of TNs. Even a drastic increase in FPs will not have much effect

on FPR if there are enough TNs, leading to not much effect to the ROC curve. On the

other hand, PR space uses precision, which does not use TNs in the calculation. In

this research, normal connections represent the majority class as well as the negative

class. Correct classifications of this class is uninteresting to the problem at hand,

therefore any metric that includes TNs as part of the calculation, allowing the metric

to be skewed by a negative majority class, is considered irrelevant.

To produce a PR curve, precision and recall points much be calculated for varying

threshold settings in the classifier. For probabilistic classifiers, the threshold is the

probability in which the classification decision is made. Non-probabilistic classifiers

producing a discrete classification of 1 or 0 will have a single point rather than a

curve. Using the predictions output from WEKA with probabilities, the precision

and recall values are calculated for each threshold, producing a curve. PR curves are

presented for each classifier performance experiment in this research.

57



3.8.5 Unknown Threat Detection Rate.

The ability for each classifier and fusion method to detect unknown threats will

be measured by the rate in which the classifier correctly classifies the unknown threat

TP to entire population of unknown threats in the test sample (TP + FN). The

equation for the unknown threat detection rate mirrors that of the recall equation

presented as Equation 3.1.

Unknown threat detection rates are presented as a measure of recall using the

sums of TP and FN across all of the alert classification experiments for each classifier.

The sum method, rather than using the mean, is used due to the sample size difference

in each attack classification experiment. A 95% CI is also provided with each unknown

threat detection rate using a binomial distribution. Equation 3.12 is used to determine

the confidence interval, CI, of each unknown threat detection rate, where p̂ is the

proportion, n is the sample size, and Z is the z-score (1.96 is used for 95% CI). The

sample size is the total of all test instances, or the sum of all TP s and FNs.

CI = p̂± Z
√

1

n
p̂(1− p̂) (3.12)

3.9 Value Focused Thinking (VFT) Evaluation Approach

Value Focused Thinking (VFT) is a decision-making approach used in operations

research domain in which values are weighted in a manner that is relevant to the

decision situations of an individual or organization [24]. The basis is that decisions

should be made by evaluating values rather than alternatives. While this is not an

operational research thesis, a brief explanation of VFT is presented here for complete-

ness.

Values are explicitly weighted by the decision-maker, or evaluator, then con-

structed in a hierarchical structure of tiers where lower branches represent sub-values
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of the parent values. The weighting of the values in each branch of each tier must

sum to 1. A function that incorporates the provided weights and performance metrics

for each value is then used to compute a score which can be used to evaluate possible

decisions.

Current methods used to evaluate machine learning classifiers use combinations of

the metrics presented in Section 3.8. The metrics are often used inconsistently across

various research experiments. The metrics are not related to organizational values nor

do they allow an evaluator to weight metrics according to the organizational values.

This research proposes an method of evaluating classifiers based on an organization’s

values and how the organization weights these values. While organizations may weight

values differently from each other, the same organization may weight values differently

for different sensors on their network. The use of sensor-specific weighting schemes

would allow sensors monitoring a highly sensitive network segment to be weighted

differently than a sensor monitoring a less sensitive network segment, selecting an

appropriate classification threshold for the specific sensor location. A metric aligned

with organizational values also allows for refinement of classifier models toward those

values as classifier models can be developed to maximize the metric. The following

sections will explain how the VFT approach is applied to evaluating classifiers for use

in a hybrid IDS.

3.9.1 Applying VFT to Intrusion Detection.

The proposed VFT method of evaluation is motivated by scenario-based approach

to mitigating insider threats [27] which considers benefits and costs associated with

implementing security controls to detect insider threat activities. This approach

suggests that attack classifications can be substituted in place of scenarios and threat

classifiers substituted in place of controls when calculating Figures of Merit (FOM).
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A diagram adapted to classifier evaluation by attack classification is presented in

Figure 3.12.

Attack
Classifications

Y

X

Classifiers

FOMXY

FOMX

Figure 3.12. Calculating Figures of Merit (adapted from [27])

Mills et al. [27] present a general formula to calculate each FOM using weighted

benefits and costs as

FOMXY =
∑
j

WBjBXY j −
∑
k

WCkCXY k (3.13)

where FOMXY represents a FOM for a specific classifier, X, with regards to a specific

attack classification, Y . BXY j and CXY k represent benefits and costs, respectively,

associated with each X and Y . Each benefit and cost can be weighted using WBj and

WCk, respectively. Multiple benefits and costs can be associated with each FOM.

The approach presented in [27] considered binary security controls that were ei-

ther on or off, with no ability of sensitivity adjustment. The ability to adjust the

threshold of a classifier, as discussed in Section 3.8.4 regarding PR and ROC curves,

offers a third dimension to the scenario-based approach. Performance metrics can

be calculated for each classifier, at each threshold, for each attack classification. A

visual depiction of the three dimensions is shown in Figure 3.13.
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Figure 3.13. Calculating FOM with Classifier Thresholds

VFT comes into play when determining the metrics to use when calculating

FOMXY Z and FOMXZ , leading to the proposed value hierarchy in Figure 3.14.

The objective of this model is not to select the optimal classifier, but to select

the optimal classifier threshold. Optimal, in this situation, is defined as the clas-

sifier threshold that receives the highest score based upon the provided value hier-

archy with a specific weighting scheme applied. The VFT hierarchy leads to the

calculation of each FOMXZ , then the optimal threshold setting is found by the

max(FOMXZ1 , FOMXZ2 , ..., FOMXZn), where n is the number of thresholds. The op-

timal thresholds can then be compared across multiple classifiers to select the optimal

classifier and threshold combination, the max(FOMX1Z∗
1
, FOMX2Z∗

2
, ..., FOMXnZ∗

n
),

where n is the number of classifiers and Z∗
i represents the optimal threshold for that

classifier Xi.

With the values now defined, the next step is to define the evaluation measures

used for each of these values. The following sections explain the evaluation measures

for the value hierarchy used to compute FOMXY Z and FOMXZ .
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Figure 3.14. VFT Intrusion Detection Hierarchy

3.9.2 Known Threat Detection.

The known threat detection rate (DRK) represents a classifiers ability to detect

malicious connections of a specific attack classification. DRK is represented by the

recall rate from the classifier performance experiments with respect to a specific attack

classification category at a specific threshold on the PR curve. Equation 3.14 shows

the DRK calculation as it relates to a specific classifier, attack classification, and

threshold, X, Y , and Z respectively.

DRKXY Z
= RecallKXY Z

=
TPKXY Z

TPKXY Z
+ FNKXY Z

(3.14)

The value of the DRK is that it represents the ability of the threat classifier

to match the classification ability of the packet-level signature-based IDS by using

statistical connection-level features with a machine learning algorithm. A high DRK
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will prove higher confidence when comparing alerts from the signature-based IDS and

the threat classifier with the intent of supporting true or false positives, the subsets

An ∩Mu and Au ∩Mi presented in Section 2.3.4.

A perfect DRK would result in a threat classifier output that perfectly matches

the output of the signature-based IDS. While impressive, it would not add much

value over the signature-based IDS alone. A slightly lower DRK is desired, where

the minimal error in DRK falls into the unknown threat detection metric, explained

next.

3.9.3 Unknown Threat Detection.

The unknown threat detection rate (DRU) represents a classifiers ability to detect

malicious connections of a specific attack classification when it has not been trained

with malicious examples from said attack classification. DRU is represented by recall

in the unknown threat detection experiments with respect to a specific attack clas-

sification category at a specific classifier threshold. Equation 3.15 is similar to the

previous equation, except the values for TP and FN are derived from the unknown

threat detection experiments.

DRUXY Z
= RecallUXY Z

=
TPUXY Z

TPUXY Z
+ FNUXY Z

(3.15)

DRU is arguably the most valuable metric used in the classifier evaluation for a

threat classifier used in a hybrid IDS configuration. The notion is that signature-

based systems are well-suited to detect known threats, then the primary value of

using a threat classifier is to detect unknown threats. A high DRU will prove higher

confidence that the system is capable of detecting threats that are undetected by the

signature-based IDS, the subset Mu ∩ Au presented in Section 2.3.4.

Theoretically, a combination of the perfect DRK and DRU would result in a threat
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classifier output that perfectly matches the output of the signature-based IDS while

detecting all unknown threats. While the design of the experiments in this research

allow for a DRK and DRU of 100%, this would be unachievable in a true operating

environment due to the fact that once an unknown threat is detected, the DRK is no

longer 100%. The unknown threat that was correctly detected maintains the perfect

DRU , but since it was not detected by the signature-based IDS, the DRK will decrease

as the threat classifier and signature-based IDS do not perfectly match anymore.

Combining the use of these rates to effectively minimize the subsets of interest in

a hybrid IDS configuration, while also detecting all known and unknown threats is

the goal. This is subset Mu ∩ Au, as presented in Section 2.3.4. The perfect hybrid

IDS configuration will have only true unknown threats in this subset.

3.9.4 Precision.

The rate of precision (P ) represents the classifiers ability to detect malicious con-

nections while not misclassifying normal connections as malicious. P is represented

by the overall precision calculated from the classifier performance experiments. P

cannot be calculated per attack classification category as it considers FP metrics that

do not specifically relate to an attack class. Equation 3.16 shows the P calculation

as it relates to a specific classifier and threshold, X and Z respectively.

PXZ = PrecisionXZ =
TPXZ

TPXZ + FPXZ
(3.16)

Precision is an important metric to include as it expresses the rate in which a

FP will occur relative to the amount of TPs. Each connection classified as malicious

will require an analyst investigation. Having a high rate of precision results in less

FPs per alert shown to an analyst. The ideal rate of precision is 1, where every alert

shown to an analyst will be a TP.
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3.9.5 VFT Score Calculation.

A complete VFT function used to calculate a score for each classifier threshold,

FOMXZ , with a supplied weighting scheme is:

FOMXZ = WDRK
(
n∑
i=1

WiDRKXYiZ
) +WDRU

(
n∑
i=1

WiDRUXYiZ
) +WP (PXZ) (3.17)

where WDRK
, WDRU

, and WP represent the tier 1 weights for known threat detection,

unknown threat detection, and precision, respectively, and (W1,W2, ...,Wn), represent

the tier 2 weights per attack class, where n is the number of attack classes. Weights

must be selected such that the tier 1 weights sum to 1, WDRK
+ WDRU

+ WP = 1,

and the tier 2 weights sum to 1,
∑

(W1,W2, ...,Wn) = 1.

The optimal classifier threshold, FOM∗
XiZ

, is then calculated as the maximum of

the FOMXZ values for a classifier Xi:

FOM∗
XiZ

= max(FOMXiZ1 , FOMXiZ2 , ..., FOMXiZn) (3.18)

where n is the number of thresholds for classifier Xi. Each classifier will have an

optimal threshold.

Finally, the optimal classifier with threshold, FOM∗
XZ , is defined as the classifier

with the highest FOM∗
XiZ

of the classifiers being evaluated:

FOM∗
XZ = max(FOM∗

X1Z
, FOM∗

X2Z
, ..., FOM∗

XnZ) (3.19)

where n is the number of classifiers. The result is the optimal classifier with the

optimal prediction threshold.
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3.10 Summary

In summary, this chapter provided the methodology designed to satisfy the re-

search goals of this thesis. First, a proposed system architecture was provided to

illustrate how the applications used in this research could be operationally config-

ured. The CDX dataset used was described in detail, followed by the steps taken to

configure a network sensor to replay the raw network data then perform the data pro-

cessing necessary to prepare the data for machine learning experiments. A classifier

performance experiment and an unknown threat detection experiment were discussed,

along with the evaluation metrics that will be used for each. Finally, the chapter con-

cluded with the development of a VFT evaluation approach tailored to evaluating

classifiers for use in hybrid IDS architectures.
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IV. Results and Analysis

4.1 Chapter Overview

This chapter presents the results and analysis from the experiments discussed

in Chapter III. The first section explores the results from the classifier performance

and unknown threat detection experiments evaluated using traditional overall rates,

marginal rates, and PR curves. This evaluation is performed on each of the four

dataset subsets at varying layers of the TCP/IP stack and with additional features

at the application layer. Comparisons are made to determine whether performance is

improved by training classifiers to generalize at higher or lower levels of the TCP/IP

stack. Next, the VFT evaluation method is applied to the All Network dataset

using five notional weighting schemes. The VFT evaluation results are analyzed to

determine if there is an engineering advantage when using this method of evaluation

over the traditional classifier evaluation methods.

4.2 Classification Results by Dataset

This section compares the performance of various classifiers for each dataset using

typical measures for classifier comparisons. The F-Measure, G-Measure, and MCC

will be compared as overall performance rates. Precision, recall, and the unknown

threat detection rate will be compared as marginal rates. F-Measure, G-Measure,

MCC, precision, and recall are presented as mean rates from the withheld test sets

from each fold of the 10-fold cross-validation experiment. The unknown threat de-

tection rate is presented as a sum of the withheld test instances from each alert

classification in the unknown threat detection experiment. Recall that this research

uses imbalanced data sets, therefore metrics that do not account for this, such as

accuracy and false positive rates, are not considered.
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The methods of comparisons used in this section are often used to select the op-

timal classifier for a specific problem or declare a classifier as the best classifier in a

research experiment. The “no free lunch” theorem [47] should be considered when

labeling classifiers as optimal or best, with the understanding that the classifier is

optimal only in the sense of the evaluation criteria, problem, and data used for ex-

perimentation. Confusion matrices for each data set showing the results per classifier

can be found in Appendix D

4.2.1 All Network Data.

The mean overall rates for the All Network Data dataset are presented in Ta-

ble 4.1. The J48 and AdaBoost.J48 algorithms consistently score the highest across

all three overall rate measurements, follwed by AdaBoost.BayesNet, MLP, SMO, and

BayesNet in that order. IBk consistently scores the lowest across all three overall

rate measurements. Selecting a classifier using these metrics alone would lead to the

selection of the J48 or the AdaBoost.J48 algorithms.

Table 4.1. Mean Overall Rates with 95% CI - All Network Data

Classifier F1-Measure G-Measure MCC

AdaBoost.BayesNet 0.9169 (0.9156-0.9181) H# 0.9170 (0.9157-0.9182) H# 0.8671 (0.8652-0.8691) H#

AdaBoost.J48 0.9279 (0.9271-0.9288)  0.9281 (0.9272-0.9289)  0.8849 (0.8837-0.8862)  

BayesNet 0.8848 (0.8836-0.8860) H# 0.8848 (0.8836-0.8860) H# 0.8146 (0.8126-0.8165) H#

IBk 0.6841 (0.6237-0.7445) # 0.7131 (0.6619-0.7643) # 0.4419 (0.3281-0.5556) #

J48 0.9274 (0.9266-0.9281)  0.9275 (0.9267-0.9283)  0.8840 (0.8828-0.8852)  

MLP 0.9087 (0.9075-0.9099) H# 0.9087 (0.9075-0.9099) H# 0.8526 (0.8505-0.8546) H#

SMO 0.8863 (0.8847-0.8878) H# 0.8863 (0.8848-0.8879) H# 0.8176 (0.8152-0.8200) H#

 Best performer(s) H# Mid-level performer(s) # Worst performer(s) statistically per rate

The mean marginal rates for the All Network Data dataset are presented in Ta-

ble 4.2. AdaBoost.J48 and J48 have leading rates in recall and precision. IBk also has

high recall performance, but has the worst precision of all the algorithms, explaining

why the overall rates were lower for IBk. The CI is greater on the precision and recall
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Table 4.2. Mean Marginal Rates with 95% CI - All Network Data

Classifier Recall Precision UTD Rate

AdaBoost.BayesNet 0.9027 (0.9004-0.9050) H# 0.9315 (0.9306-0.9323) H# 0.7327 (0.7306-0.7349) H#

AdaBoost.J48 0.9132 (0.9118-0.9146)  0.9432 (0.9426-0.9438)  0.7185 (0.7163-0.7207) #

BayesNet 0.8791 (0.8775-0.8806) # 0.8906 (0.8892-0.8920) H# 0.7766 (0.7746-0.7786)  

IBk 0.9260 (0.9046-0.9474)  0.5614 (0.4570-0.6658) # 0.7341 (0.7319-0.7362) H#

J48 0.9129 (0.9115-0.9143)  0.9423 (0.9417-0.9429)  0.7218 (0.7196-0.7240) H#

MLP 0.9079 (0.9057-0.9101) H# 0.9096 (0.9068-0.9124) H# 0.7160 (0.7138-0.7182) #

SMO 0.8756 (0.8733-0.8780) # 0.8971 (0.8958-0.8985) H# 0.7270 (0.7249-0.7292) H#

 Best performer(s) H# Mid-level performer(s) # Worst performer(s) statistically per rate

rates for IBk due to variance across the 10 folds of the cross-validation experiment.

When considering the Unknown Threat Detection (UTD) rate, BayesNet performs

the best with a mean of 77.66%, while MLP and AdaBoost.J48 perform the worst

with means of 71.6% and 71.85% respectively. The mean UTD rate of BayesNet is

4.25% higher than the mean rate of any of the other classifiers (3.84% higher if the

95% CI is considered). By examining marginal rates along with the UTD rate, se-

lecting the “best” classifier becomes more difficult. If the primary goal is to detect

unknown threats, BayesNet is the optimal choice, but the ability to match Snort

(recall) and maintain the lowest amount of false positives (precision) is the compro-

mise. A mid-level performer, such as AdaBoost.BayesNet, which has slightly lower

precision and recall than AdaBoost.J48 and J48, but has a higher UTD rate, might

be the preferred classifier. This is a difficult decision to make with these metrics.

The metrics reported in the Tables 4.1 and 4.2 are calculated using the predictions

made with the default threshold used by WEKA which makes the classification deci-

sion if the prediction probability is greater than or equal to 0.50. The PR curves for

the All Network Data dataset presented in Figure 4.1 show the performance of each

classifier across many thresholds. The curves for AdaBoost.J48 and J48 dominate the

PR space, followed by AdaBoost.BayesNet, then BayesNet.
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Figure 4.1. Classifier PR Curves - All Network Data

4.2.2 TCP Data.

The mean overall rates for the TCP Data dataset are presented in Table 4.3.

Similar to the All Network Data overall rates, the J48 and AdaBoost.J48 algorithms

consistently score the highest across all three overall rate measurements, follwed by

AdaBoost.BayesNet, MLP, SMO, and BayesNet in that order. IBk consistently scores

the lowest across all three overall rate measurements. Selecting a classifier using these

metrics alone would lead to the selection of the J48 or the AdaBoost.J48 algorithms

for the TCP dataset.

Table 4.3. Mean Overall Rates with 95% CI - TCP Data

Classifier F1-Measure G-Measure MCC

AdaBoost.BayesNet 0.9227 (0.9222-0.9233) H# 0.9228 (0.9223-0.9234) H# 0.8678 (0.8669-0.8687) H#

AdaBoost.J48 0.9314 (0.9305-0.9322)  0.9315 (0.9307-0.9324)  0.8829 (0.8815-0.8844)  

BayesNet 0.8926 (0.8913-0.8938) H# 0.8926 (0.8914-0.8939) H# 0.8150 (0.8130-0.8171) H#

IBk 0.6857 (0.6455-0.7260) # 0.7141 (0.6800-0.7482) # 0.3861 (0.3009-0.4713) #

J48 0.9307 (0.9298-0.9315)  0.9308 (0.9300-0.9316)  0.8817 (0.8804-0.8831)  

MLP 0.9156 (0.9146-0.9167) H# 0.9157 (0.9146-0.9167) H# 0.8544 (0.8526-0.8561) H#

SMO 0.8998 (0.8985-0.9010) H# 0.8998 (0.8985-0.9011) H# 0.8272 (0.8250-0.8293) H#

 Best performer(s) H# Mid-level performer(s) # Worst performer(s) statistically per rate

70



Table 4.4. Mean Marginal Rates with 95% CI - TCP Data

Classifier Recall Precision UTD Rate

AdaBoost.BayesNet 0.9093 (0.9077-0.9109) H# 0.9366 (0.9352-0.9381) H# 0.7424 (0.7402-0.7445) H#

AdaBoost.J48 0.9153 (0.9139-0.9167) H# 0.9480 (0.9470-0.9490)  0.7283 (0.7261-0.7305) H#

BayesNet 0.8849 (0.8830-0.8869) # 0.9004 (0.8991-0.9017) H# 0.7808 (0.7788-0.7829)  

IBk 0.9385 (0.9221-0.9548)  0.5492 (0.4776-0.6208) # 0.7413 (0.7391-0.7434) H#

J48 0.9146 (0.9132-0.9161) H# 0.9473 (0.9463-0.9482)  0.7285 (0.7263-0.7307) H#

MLP 0.9108 (0.9090-0.9127) H# 0.9205 (0.9194-0.9216) H# 0.6998 (0.6975-0.7020) #

SMO 0.8935 (0.8916-0.8953) H# 0.9061 (0.9049-0.9074) H# 0.7412 (0.7390-0.7433) H#

 Best performer(s) H# Mid-level performer(s) # Worst performer(s) statistically per rate

The mean marginal rates for the TCP Data dataset are presented in Table 4.4.

IBk has a slight statistical advantage over the other classifiers in terms of recall, but

this gain is attributed to a low rate of precision. AdaBoost.J48 and J48 follow closely

in terms of recall and have the statistical advantage in terms of precision. BayesNet

has the lowest rate of recall at 88.49%, but has the highest UTD rate at 78.08%, which

is 3.84% higher than the mean rate of any of the other classifiers (3.43% higher if the

95% CI is considered). Again, it is difficult to make a classifier selection by comparing

precision, recall, and UTD rates. Depending on the desired application, an evaluator

could choose AdaBoost.J48 or J48 based on recall and precision performance, BayeNet

based on UTD performance, or a mid-level performer that better balances each rate.

The PR curves for the TCP Data dataset are presented in Figure 4.2. The curves

are very similar to those from the All Network Data dataset, with AdaBoost.J48 and

J48 dominating the PR space, followed by AdaBoost.BayesNet, then BayesNet.

To compare the classification performance between the All Network and TCP

datasets, the TCP connections were extracted from the classifier performance and

unknown threat detection experiments performed with the All Network dataset and

the marginal rates for recall and UTD rate were calculated. Due to uneven sampling of

TCP connections per fold in the All Network dataset, these rates are calculated using

the total number of instances classified from the positive class (threat connections)

71



0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

AdaBoostBayesNet

AdaBoostJ48

BayesNet

IBk

J48

MLP

SMO

(a) Full Curve

0.80 0.85 0.90 0.95 1.00
Recall

0.80

0.85

0.90

0.95

1.00

P
re

ci
si

o
n

(b) Zoomed View

Figure 4.2. Classifier PR Curves - TCP Data

across the 10 cross-validation folds, rather than the mean rates of the 10 folds. The

overall rates and precision were not compared as they involve calculations using the

negative class (normal connections) which vary among the All Network and TCP

datasets due to the random sampling process described in Section 3.5.6. These results

are presented in Table 4.5. There was not a significant difference in performance

between the All Network and TCP datasets in terms of recall and UTD rates. This

Table 4.5. Performance Comparison of TCP-Only Connections

All Network TCP

Classifier Recall UTDR Recall UTDR

AdaBoost.BayesNet 0.905497 0.734456 0.909297 0.742404

AdaBoost.J48 0.914792 0.720397 0.915349 0.728314

BayesNet 0.884085 0.780743 0.884911 0.780843

IBk 0.926951 0.735656 0.938455 0.741292

J48 0.914723 0.723796 0.914606 0.728520

MLP 0.914613 0.721503 0.910840 0.699791

SMO 0.883300 0.733156 0.893469 0.741185
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is as expected due to the difference of only 1,287 of the positive class between the

two datasets, 146,531 in the All Network dataset compared to 145,244 in the TCP

dataset. If comparisons could be made among the negative class in each dataset, a

difference in precision may be present.

4.2.3 HTTP Data.

The mean overall rates for the HTTP Data dataset are presented in Table 4.6. J48

and AdaBoost.J48 algorithms consistently score the highest across all three overall

rate measurements, follwed by AdaBoost.BayesNet, IBk, MLP, and BayesNet in that

order. SMO consistently performed the worst across all three overall rate measure-

ments.

Performance from SMO was significantly degraded compared to the SMO perfor-

mance in the All Network and TCP datasets, with an average decrease in mean rates

of 8.38% in the All Network dataset and 9.6% in the TCP dataset across all three

overall rates. Performance from IBk was significantly improved compared to the IBk

performance in the All Network and TCP datasets, with an average increase in mean

rates of 32.94% in the All Network dataset and 34.71% in the TCP dataset across

all three overall rates. These changes in performance indicate that IBk may have

improved performance at higher levels of the IP stack while SMO may have improved

Table 4.6. Mean Overall Rates with 95% CI - HTTP Data

Classifier F1-Measure G-Measure MCC

AdaBoost.BayesNet 0.9521 (0.9503-0.9539) H# 0.9521 (0.9503-0.9540) H# 0.9386 (0.9363-0.9409) H#

AdaBoost.J48 0.9664 (0.9651-0.9676)  0.9664 (0.9652-0.9676)  0.9568 (0.9552-0.9583) H#

BayesNet 0.8574 (0.8558-0.8591) H# 0.8650 (0.8636-0.8664) H# 0.8223 (0.8203-0.8242) H#

IBk 0.9474 (0.9463-0.9486) H# 0.9475 (0.9463-0.9486) H# 0.9324 (0.9308-0.9339) H#

J48 0.9681 (0.9673-0.9689)  0.9682 (0.9674-0.9690)  0.9592 (0.9582-0.9602)  

MLP 0.9069 (0.8989-0.9148) H# 0.9078 (0.8998-0.9158) H# 0.8827 (0.8718-0.8936) H#

SMO 0.7981 (0.7950-0.8011) # 0.7983 (0.7954-0.8013) # 0.7424 (0.7389-0.7459) #

 Best performer(s) H# Mid-level performer(s) # Worst performer(s) statistically per rate
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Table 4.7. Mean Marginal Rates with 95% CI - HTTP Data

Classifier Recall Precision UTD Rate

AdaBoost.BayesNet 0.9436 (0.9410-0.9463) H# 0.9607 (0.9581-0.9633) H# 0.5574 (0.5530-0.5619) H#

AdaBoost.J48 0.9623 (0.9604-0.9642) H# 0.9704 (0.9693-0.9715) H# 0.5581 (0.5536-0.5625) H#

BayesNet 0.9876 (0.9861-0.9892)  0.7576 (0.7546-0.7606) # 0.6086 (0.6043-0.6130)  

IBk 0.9479 (0.9463-0.9495) H# 0.9470 (0.9451-0.9489) H# 0.4634 (0.4590-0.4679) H#

J48 0.9584 (0.9565-0.9602) H# 0.9781 (0.9769-0.9793)  0.5485 (0.5441-0.5530) H#

MLP 0.8792 (0.8641-0.8942) H# 0.9384 (0.9125-0.9644) H# 0.2871 (0.2830-0.2911) #

SMO 0.7794 (0.7733-0.7855) # 0.8177 (0.8163-0.8191) H# 0.2882 (0.2841-0.2922) #

 Best performer(s) H# Mid-level performer(s) # Worst performer(s) statistically per rate

performance at the lower levels of the IP stack, but this could be attributed to the

classification performance of HTTP traffic alone. This is examined further in the

following section.

The mean marginal rates for the HTTP Data dataset are presented in Table 4.7.

BayesNet is the leader in terms of recall by difference in means of 2.53% (2.19% if the

95% CI is considered) and the leader in terms of UTD rate by a difference in means

of 5.05% (4.18% if the 95% CI is considered). The high performance in recall and

unknown threat detection come at the price of a reduced level of precision, the lowest

mean precision rate of the group at 75.76%. AdaBoost.BayesNet, AdaBoost.J48,

J48, and IBk all perform well in terms of recall and precision, with rates ranging

from 94.36-96.23% for recall and 94.7-96.07% for precision. The mean UTD rates for

AdaBoost.BayesNet, AdaBoost.J48, and J48 range from 54.85-55.81%, while IBk is

significantly lower at 46.34%. The UTD rates are significantly lower in the HTTP

dataset than the All Network or TCP datasets, by the largest difference of 45.3% for

SMO from the TCP dataset to the HTTP dataset and by smallest difference of 16.04%

for AdaBoost.J48 from the All Network dataset to the HTTP dataset. This could

be attributed to the possibility that variations of HTTP threats are more difficult to

classify or that their are non-HTTP threats in the All Network and TCP datasets

in which the variations are easier to classify, in turn raising the UTD rates. This is
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Figure 4.3. Classifier PR Curves - HTTP Data

examined later by extracting the HTTP threat connections from the All Network and

TCP datasets and making comparisons to the results from the HTTP dataset.

The PR curves for the HTTP Data dataset are presented in Figure 4.3. The

curves for AdaBoost.J48 and J48 continue to dominate the PR space with the HTTP

dataset as they did with the All Network and the TCP datasets. AdaBoost.BayesNet

is also a strong performer.

4.2.4 HTTP Data with Additional Features.

The purpose of performing experiments on the HTTP dataset with additional fea-

tures is to determine whether other features derived from Bro’s http.log can improve

classifier performance. Rather than make comparisons among the various classifiers,

each rate is marked whether or not there was a statistically significant change in

comparison to the rates from the HTTP dataset without the additional features. The

mean overall rates for the HTTP Data with Additional Features dataset are pre-

sented in Table 4.8. There was a consistent improvement across the mean overall
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Table 4.8. Mean Overall Rates with 95% CI - HTTP Data with Additional Features

Classifier F1-Measure G-Measure MCC

AdaBoost.BayesNet 0.9536 (0.9520-0.9551) − 0.9536 (0.9521-0.9551) − 0.9405 (0.9386-0.9424) −

AdaBoost.J48 0.9691 (0.9676-0.9706) ↑ 0.9691 (0.9676-0.9706) ↑ 0.9603 (0.9584-0.9622) ↑

BayesNet 0.8588 (0.8573-0.8602) − 0.8661 (0.8647-0.8674) − 0.8238 (0.8220-0.8256) −

IBk 0.5255 (0.4651-0.5860) ↓ 0.5801 (0.5195-0.6406) ↓ 0.3877 (0.2903-0.4850) ↓

J48 0.9705 (0.9692-0.9719) ↑ 0.9706 (0.9692-0.9720) ↑ 0.9623 (0.9606-0.9641) ↑

MLP 0.8086 (0.7546-0.8626) ↓ 0.8217 (0.7749-0.8685) ↓ 0.7831 (0.7307-0.8356) ↓

SMO 0.9133 (0.9121-0.9146) ↑ 0.9134 (0.9121-0.9147) ↑ 0.8889 (0.8872-0.8906) ↑

↑ Statistically significant improvement ↓ Statistically significant degradation − No statistically significant change

rates for AdaBoost.J48, J48, and SMO, consistent degradation for IBk and MLP,

and no significant change for AdaBoost.BayesNet and BayesNet.

The mean marginal rates for the HTTP Data with Additional Features dataset

are presented in Table 4.9. AdaBoost.J48 and J48 saw improvements in recall and/or

precision with no significant change in UTD rate. SMO saw improvements in all rates.

This suggests that J48 and SMO both responded positively to the additional features

used. AdaBoost.BayesNet and BayesNet saw no significant change in precision or

recall, but did see a degradation in UTD Rate. MLP saw a degradation in recall and

UTD rate and IBk saw a drastic degradation in precision. This suggests BayeNet,

MLP, and IBk all responded negatively to the additional features used.

The PR curves for the HTTP Data with Additional Features dataset are presented

in Figure 4.4. The PR curves are similar to the HTTP dataset with the use of the

Table 4.9. Mean Marginal Rates with 95% CI - HTTP Data with Additional Features

Classifier Recall Precision UTD Rate

AdaBoost.BayesNet 0.9441 (0.9407-0.9474) − 0.9633 (0.9619-0.9646) − 0.5124 (0.5080-0.5169) ↓

AdaBoost.J48 0.9650 (0.9630-0.9670) − 0.9732 (0.9717-0.9748) ↑ 0.5589 (0.5545-0.5634) −

BayesNet 0.9868 (0.9850-0.9885) − 0.7602 (0.7577-0.7626) − 0.5847 (0.5803-0.5891) ↓

IBk 0.9093 (0.8227-0.9959) − 0.3724 (0.3201-0.4248) ↓ 0.9038 (0.9012-0.9065) ↑

J48 0.9602 (0.9584-0.9621) ↑ 0.9811 (0.9794-0.9827) ↑ 0.5533 (0.5488-0.5577) −

MLP 0.7400 (0.6351-0.8449) ↓ 0.9304 (0.8836-0.9771) − 0.2561 (0.2522-0.2600) ↓

SMO 0.9045 (0.9025-0.9066) ↑ 0.9223 (0.9198-0.9249) ↑ 0.5207 (0.5162-0.5252) ↑

↑ Statistically significant improvement ↓ Statistically significant degradation − No statistically significant change
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Figure 4.4. Classifier PR Curves - HTTP Data with Additional Features

additional features. An improvement for SMO and a degradation for MLP can be

noticed across the threshold ranges.

To compare the classification performance between the All Network, TCP, and

HTTP datasets, the HTTP connections were extracted from the classifier performance

and unknown threat detection experiments performed with the All Network and TCP

datasets and the marginal rates for recall and UTD rate were calculated. Similar to

the TCP connection comparison, precision and the overall rates were not compared

as the calculations include the negative class (normal connections) which vary among

the All Network and TCP datasets due to the random sampling process described in

Section 3.5.6.

The results presented in Table 4.10 show a degradation in performance at the

HTTP layer when compared to the All Network and TCP layers. These results are

calculated using the default WEKA threshold of classification, the class with greater

than or equal to 0.50 probability is the predicted class. Since precision or other

metrics that factor in FPs were not available for direct comparison, there is no way
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Table 4.10. Performance Comparison of HTTP-Only Connections

All Network TCP HTTP HTTP Extra

Classifier Recall UTDR Recall UTDR Recall UTDR Recall UTDR

AdaBoost.BayesNet 0.988366 0.669448 0.990321 0.689026 0.943643 0.557424 0.944072 0.512434

AdaBoost.J48 0.991203 0.609149 0.991847 0.628977 0.962333 0.558093 0.964980 0.558909

BayesNet 0.997258 0.784987 0.997211 0.778210 0.987651 0.608709 0.986793 0.584698

IBk 0.982383 0.518876 0.984433 0.519901 0.947910 0.463429 0.909338 0.903830

J48 0.990965 0.617578 0.991084 0.629060 0.958352 0.548514 0.960236 0.553262

MLP 0.991418 0.551254 0.989010 0.485202 0.879181 0.287256 0.739958 0.256071

SMO 0.931318 0.554768 0.960927 0.569555 0.779913 0.288218 0.904522 0.520780

to conclusively state that classification performance is increased at the lower levels

(All Network and/or TCP). The results are interesting nonetheless and pose a possible

area for further research, which is out of the scope of this thesis.

4.3 Value Focused Thinking Evaluation Results

This section applies the VFT evaluation approach to the classification results from

the All Network dataset using five notional weighting schemes. The process of parsing

the PR curve space by alert class is discussed first. Five notional weighting scheme

scenarios are presented next, along with the results from the VFT evaluation for

each weighting scheme. A summary of the VFT results is then presented to compare

classifier selections across the five weighting schemes.

Since the VFT calculations take place after the classifier has classified each in-

stance of the dataset, there is no need to retrain or retest the classifier models when

altering a weighting scheme. The VFT evaluation approach selects a threshold setting

and provides classifier performance results for the selected threshold using the pre-

diction probabilities provided with the classification results. The results do provide

different predictions based on the threshold selected. The point being that weight-

ing schemes can be flexible, adjusted as needed per organizational requirements. For

example, different functional offices within the organization could view the same clas-
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sification results using a different weighting scheme. Different network sensors could

apply different weighting schemes. Weighting schemes could also be used in a manner

to tune other classifier parameters to achieve higher performance based on the val-

ues of the evaluator rather than tuning to improve overall or marginal performance

metrics.

4.3.1 PR Curves by Alert Class.

The evaluation methods used in the previous sections examine PR curves for the

overall classification results. The VFT evaluation approach allows an evaluator to

weight the importance of detecting malicious connections by alert classifications. In

order to weight each alert class and perform the VFT calculations for all thresholds

of a PR curve, the single curve was separated into n curves, where n is the num-

ber of alert classes in the dataset. Figure 4.5 illustrates the output of this process

by showing the normal single PR curve from the classifier performance experiment

for AdaBoost.J48 in Figure 4.5(a) compared to the PR curves by alert class in Fig-
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Figure 4.5. PR Curves by Alert Class - Classifier Performance
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Figure 4.6. PR Curves by Alert Class - Unknown Threat Detection

ure 4.5(b).

A similar method can be used to create PR curves by alert class for the unknown

threat detection capability of an algorithm. Because there were no negative class

instances (normal connections) used in the testing portion of the unknown threat

detection experiments, the precision values calculated at the corresponding thresholds

from the classifier performance experiments are used. Figure 4.6 illustrates the output

of this process by showing the normal single PR curve incorporating the UTD rate

with precision for AdaBoost.J48 in Figure 4.6(a) compared to the PR curves by alert

class in Figure 4.6(b).

The data points on the PR curves by alert class provide the detection rates (DRK

and DRU) and precision rate required to compute the FOM scores for each threshold

using the calculation for FOMXZ presented as Equation 3.17. The max scores for

each classifier, then the max scores from a set of classifiers can be calculated using

Equations 3.18 and 3.19. The weighting schemes, discussed next, become the variables

for an evaluator to use when selecting the optimal classifier using the VFT hierarchy.
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4.3.2 Scenario 1 - Balanced.

In the balanced scenario, value is placed equally on detection and precision across

all of the alert classifications. The specific values for the weighting scheme are pre-

sented in Table 4.11. Notice, to achieve balanced weighting on detection and precision,

DRK and DRU are weighted at 0.25 each, summing to 0.50, and P is weighted at

0.50. To balance the weight across the 16 alert classifications, 0.0625 is used. It is

expected that this weighting scheme will select a threshold that represents the PR

curve point closest to (1, 1).

Table 4.11. VFT Weighting Scheme - Scenario 1

Tier 1 Weights Tier 2 Weights
DRK 0.25 attempted admin 0.0625
P 0.50 attempted dos 0.0625
DRU 0.25 attempted recon 0.0625

attempted user 0.0625
bad unknown 0.0625
malware cnc 0.0625
misc activity 0.0625
misc attack 0.0625

network scan 0.0625
non standard protocol 0.0625

not suspicious 0.0625
protocol command decode 0.0625

rpc portmap decode 0.0625
suspicious filename detect 0.0625

suspicious login 0.0625
system call detect 0.0625

The VFT results for this weighting scheme are provided in Table 4.12, with the

highest ranked classifier on the left. The VFT results including the optimal threshold

and score are shown, followed by the overall performance rates showing precision,

known threat detection (DRK) and unknown threat detection (DRU). Then, the

detection rates for known and unknown are shown for each alert class for the selected

threshold. Similar tables are presented for each weighting scheme scenario.
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Table 4.12. VFT Evaluation Results - Scenario 1
AdaBoost AdaBoost

J48 J48 BayesNet MLP BayesNet SMO IBk

Value-Focused Results

Threshold 0.199 0.094 0.292 0.229 0.001 0.241 0.500

Value-Focused Score 0.6824 0.6813 0.6758 0.6739 0.6725 0.6655 0.5586

Overall Performance

P 0.9323 0.9338 0.9200 0.8989 0.8744 0.8914 0.5263

DRK 0.9188 0.9164 0.9127 0.9121 0.8928 0.9000 0.9260

DRU 0.7292 0.7340 0.7542 0.7299 0.8046 0.7391 0.7341

DR by Alert Class DRK DRU DRK DRU DRK DRU DRK DRU DRK DRU DRK DRU DRK DRU

H
ig

h
P

ri attempted-admin 0.9848 0.9818 0.9829 0.9755 0.9773 0.9677 0.9773 0.9725 0.9480 0.8845 0.9703 0.9673 0.9346 0.9473

attempted-user 0.9474 0.9298 0.9123 0.9123 0.9123 0.8947 0.8947 0.9649 0.9123 0.9123 0.7368 0.7368 0.8421 0.7544

malware-cnc 0.8559 0.8462 0.8430 0.8387 0.8473 0.8269 0.8720 0.8688 0.8871 0.8871 0.8667 0.8667 0.8581 0.8505

M
ed

iu
m

P
ri

attempted-dos 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7143 0.7143

attempted-recon 0.7634 0.7345 0.7594 0.7313 0.7575 0.7351 0.7527 0.7485 0.7427 0.7368 0.7250 0.7182 0.8786 0.8909

bad-unknown 0.9387 0.6921 0.9370 0.7008 0.9329 0.7261 0.9360 0.6620 0.9196 0.7953 0.9248 0.6564 0.9384 0.6590

misc-attack 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

non-std-proto 0.9685 0.9032 0.9668 0.9085 0.9677 0.9091 0.9199 0.8725 0.9188 0.9190 0.9156 0.9170 0.9056 0.7632

rpc-port-decode 1.0000 1.0000 1.0000 1.0000 1.0000 0.7692 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8846 0.7308

susp-file-detect 0.9746 0.9077 0.9701 0.9070 0.9658 0.9530 0.9565 0.9471 0.9575 0.9573 0.9435 0.9453 0.9455 0.8527

susp-login 0.8108 0.6518 0.8075 0.6474 0.8050 0.6403 0.8089 0.7986 0.7261 0.7141 0.7822 0.7776 0.8830 0.7828

sys-call-detect 0.9780 0.8079 0.9833 0.9744 0.9815 0.8476 0.9912 0.9903 0.9947 0.9947 0.9947 0.9947 0.8819 0.7313

L
ow

P
ri

misc-activity 0.8919 0.8649 0.9189 0.7027 0.9189 0.9189 0.7568 0.7027 0.9459 0.9730 0.7027 0.7027 0.7838 0.7027

network-scan 0.9412 0.9216 0.9412 0.9020 0.9020 0.9216 0.9608 0.9608 0.9608 0.9608 0.9412 0.9608 0.9804 0.9804

not-suspicious 0.9714 0.6187 0.9695 0.6164 0.9541 0.6363 0.9616 0.6121 0.8899 0.6971 0.9601 0.7753 0.9296 0.7676

proto-cmd-decode 0.9349 0.9331 0.9316 0.9243 0.9313 0.9285 0.9334 0.9276 0.9057 0.9061 0.9246 0.9222 0.9173 0.9231

The classifier selection results are similar to the overall and marginal rate com-

parisons of the All Network dataset from Section 4.2.1, with AdaBoost.J48 and J48

having the highest performance. Recall that in the overall and marginal rate com-

parisons, WEKA’s default threshold of 0.50 was used to compute the rates. The

VFT evaluation shows optimal thresholds, based on the VFT hierarchy and weight-

ing scheme used. Better performance is achieved with lower thresholds than the

default of 0.50. For example, the optimal threshold for AdaBoost.J48 is 0.199 with

this weighting scheme. This demonstrates that comparing classifier performance at

a constant threshold will not always provide the best comparison of performance in

relation to the values of the evaluator. The optimal thresholds are marked on the PR

curves for the top six classifiers in Figure 4.7.

82



0.80 0.85 0.90 0.95 1.00
Recall

0.80

0.85

0.90

0.95

1.00

P
re

ci
si

o
n

AdaBoostJ48

J48

AdaBoostBayesNet

MLP

BayesNet

SMO

(a) PR Curves - Recall

0.5 0.6 0.7 0.8 0.9 1.0
UTDR

0.80

0.85

0.90

0.95

1.00

P
re

ci
si

o
n

(b) PR Curves - UTD Rate

Figure 4.7. VFT Optimal Thresholds - Scenario 1

4.3.3 Scenario 2 - Alert Class Priority.

The alert class priority scenario is a balanced approach with an emphasis placed

on the default priorities of the alert classifications. The same weights used for DRK ,

DRU , and P in scenario 1 are applied. Alert classifications are weighted according

to their default priority levels provided with the default Snort alert classifications in

Appendix A. High priority classes receive a weight of 0.14, medium priority classes

receive a weight of 0.06, and low priority classes receive a weight of 0.01. The specific

values for the weighting scheme are presented in Table 4.13. This weighting scheme

could be considered a first step to take when evaluating PR curves separated by attack

class. Using default class priorities to develop the weights removes some of the guess

work involved. This weighting scheme still does not take full advantage of weighting

known threat detection, unknown threat detection, and precision.

The VFT results for this weighting scheme are provided in Table 4.14. Interest-

ingly, by simply adjusting the alert class weights to differentiate between low, medium,

and high priority alerts, the VFT evaluation selects a different optimal threshold for
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Table 4.13. VFT Weighting Scheme - Scenario 2

Tier 1 Weights Tier 2 Weights
DRK 0.25 attempted admin 0.14
P 0.50 attempted dos 0.06
DRU 0.25 attempted recon 0.06

attempted user 0.14
bad unknown 0.06
malware cnc 0.14
misc activity 0.01
misc attack 0.06

network scan 0.01
non standard protocol 0.06

not suspicious 0.01
protocol command decode 0.01

rpc portmap decode 0.06
suspicious filename detect 0.06

suspicious login 0.06
system call detect 0.06

Table 4.14. VFT Evaluation Results - Scenario 2
AdaBoost AdaBoost

J48 J48 MLP BayesNet BayesNet SMO IBk

Value-Focused Results

Threshold 0.122 0.094 0.229 0.177 0.001 0.241 0.500

Value-Focused Score 0.6876 0.6864 0.6818 0.6787 0.6724 0.6646 0.5579

Overall Performance

P 0.9216 0.9338 0.8989 0.8945 0.8744 0.8914 0.5263

DRK 0.9212 0.9164 0.9121 0.9187 0.8928 0.9000 0.9260

DRU 0.7323 0.7340 0.7299 0.7619 0.8046 0.7391 0.7341

DR by Alert Class DRK DRU DRK DRU DRK DRU DRK DRU DRK DRU DRK DRU DRK DRU

H
ig

h
P

ri attempted-admin 0.9866 0.9844 0.9829 0.9755 0.9773 0.9725 0.9829 0.9759 0.9480 0.8845 0.9703 0.9673 0.9346 0.9473

attempted-user 0.9649 0.9298 0.9123 0.9123 0.8947 0.9649 0.9298 0.9123 0.9123 0.9123 0.7368 0.7368 0.8421 0.7544

malware-cnc 0.8656 0.8849 0.8430 0.8387 0.8720 0.8688 0.8602 0.8581 0.8871 0.8871 0.8667 0.8667 0.8581 0.8505

M
ed

iu
m

P
ri

attempted-dos 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7143 0.7143

attempted-recon 0.7685 0.7438 0.7594 0.7313 0.7527 0.7485 0.7653 0.7518 0.7427 0.7368 0.7250 0.7182 0.8786 0.8909

bad-unknown 0.9409 0.6945 0.9370 0.7008 0.9360 0.6620 0.9377 0.7298 0.9196 0.7953 0.9248 0.6564 0.9384 0.6590

misc-attack 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

non-std-proto 0.9697 0.9107 0.9668 0.9085 0.9199 0.8725 0.9748 0.9251 0.9188 0.9190 0.9156 0.9170 0.9056 0.7632

rpc-port-decode 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8846 1.0000 1.0000 1.0000 1.0000 0.8846 0.7308

susp-file-detect 0.9760 0.9098 0.9701 0.9070 0.9565 0.9471 0.9784 0.9606 0.9575 0.9573 0.9435 0.9453 0.9455 0.8527

susp-login 0.8152 0.6539 0.8075 0.6474 0.8089 0.7986 0.8099 0.6599 0.7261 0.7141 0.7822 0.7776 0.8830 0.7828

sys-call-detect 0.9797 0.8264 0.9833 0.9744 0.9912 0.9903 0.9885 0.9057 0.9947 0.9947 0.9947 0.9947 0.8819 0.7313

L
ow

P
ri

misc-activity 0.8919 0.8649 0.9189 0.7027 0.7568 0.7027 0.9189 0.9189 0.9459 0.9730 0.7027 0.7027 0.7838 0.7027

network-scan 0.9412 0.9412 0.9412 0.9020 0.9608 0.9608 0.9020 0.9216 0.9608 0.9608 0.9412 0.9608 0.9804 0.9804

not-suspicious 0.9720 0.6194 0.9695 0.6164 0.9616 0.6121 0.9603 0.6430 0.8899 0.6971 0.9601 0.7753 0.9296 0.7676

proto-cmd-decode 0.9425 0.9358 0.9316 0.9243 0.9334 0.9276 0.9398 0.9377 0.9057 0.9061 0.9246 0.9222 0.9173 0.9231

the highest performer, AdaBoost.J48. The selected threshold was reduced from 0.199

to 0.122, increasing detection rates with a slight reduction in precision, based on the
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value placed on detecting alerts in each priority class. By weighting the alert classes

in a manner that reflects the values of the evaluator, a threshold is selected that

provides better peformance with respect to the weighted alert classes. The optimal

thresholds are marked on the PR curves for the top six classifiers in Figure 4.8.

A significant discovery with this scenario is that MLP now ranks higher than

AdaBoost.BayesNet. A lower prediction threshold of 0.177 was selected for Ad-

aBoost.BayesNet, compared to the threshold of 0.292 selected with the balanced

weighting scheme. This improved detection rates, specifically for the high priority

classes, but decreased precision causing the overall score to be less than the score of

MLP. Even though AdaBoost.BayesNet dominates MLP in PR space in both Fig-

ures 4.8(a) and 4.8(b), MLP scores higher in the VFT calculations because of the

detection rates per alert class. This demonstrates value in comparing each classifier’s

performance by alert class using a weighting scheme. Selecting a classifier based solely

on overall performance, without parsing by alert classes, could result in the selection

of a suboptimal classifier with respect to the alert classes of value.
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Figure 4.8. VFT Optimal Thresholds - Scenario 2
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4.3.4 Scenario 3 - Detect Unknown Threats.

The detect unknown threats scenario uses the same tier 2 weights as scenario 2 to

leverage the priority level weighting by alert class, but with tier 1 weights adjusted to

emphasize unknown threat detection. DRK is weighted at 0, while DRU and P are

evenly weighted at 0.50. This weighting scheme could be recommended for a hybrid

IDS where the goal is to use the classifier primarily as a means to detect unknown

threats, a focus on the set Au ∩Mu discussed in Section 2.3.4. The complete values

for the weighting scheme for scenario 3 are presented in Table 4.15.

The VFT results for this weighting scheme are provided in Table 4.16. MLP ranks

the highest with this weighting scheme due to its ability to detect unknown threats of

high and medium priority better than the other classifiers. Recall from the marginal

rate comparison in Table 4.2 that MLP was noted as a mid-level performer in terms of

recall and precision, and as one of the worst performers in terms of UTD rate. Those

comparisons were made using the default WEKA threshold of 0.50 and no preference

Table 4.15. VFT Weighting Scheme - Scenario 3

Tier 1 Weights Tier 2 Weights
DRK 0.00 attempted admin 0.14
P 0.50 attempted dos 0.06
DRU 0.50 attempted recon 0.06

attempted user 0.14
bad unknown 0.06
malware cnc 0.14
misc activity 0.01
misc attack 0.06

network scan 0.01
non standard protocol 0.06

not suspicious 0.01
protocol command decode 0.01

rpc portmap decode 0.06
suspicious filename detect 0.06

suspicious login 0.06
system call detect 0.06
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Table 4.16. VFT Evaluation Results - Scenario 3
AdaBoost AdaBoost

MLP J48 J48 BayeNet BayesNet SMO IBk

Value-Focused Results

Threshold 0.208 0.094 0.122 0.001 0.177 0.241 0.500

Value-Focused Score 0.6779 0.6761 0.6753 0.6677 0.6675 0.6599 0.5408

Overall Performance

P 0.8972 0.9338 0.9216 0.8744 0.8945 0.8914 0.5263

DRK 0.9124 0.9164 0.9212 0.8928 0.9187 0.9000 0.9260

DRU 0.7315 0.7340 0.7323 0.8046 0.7619 0.7391 0.7341

DR by Alert Class DRK DRU DRK DRU DRK DRU DRK DRU DRK DRU DRK DRU DRK DRU

H
ig

h
P

ri attempted-admin 0.9777 0.9766 0.9829 0.9755 0.9866 0.9844 0.9480 0.8845 0.9829 0.9759 0.9703 0.9673 0.9346 0.9473

attempted-user 0.8947 0.9649 0.9123 0.9123 0.9649 0.9298 0.9123 0.9123 0.9298 0.9123 0.7368 0.7368 0.8421 0.7544

malware-cnc 0.8731 0.8688 0.8430 0.8387 0.8656 0.8849 0.8871 0.8871 0.8602 0.8581 0.8667 0.8667 0.8581 0.8505

M
ed

iu
m

P
ri

attempted-dos 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7143 0.7143

attempted-recon 0.7533 0.7518 0.7594 0.7313 0.7685 0.7438 0.7427 0.7368 0.7653 0.7518 0.7250 0.7182 0.8786 0.8909

bad-unknown 0.9363 0.6637 0.9370 0.7008 0.9409 0.6945 0.9196 0.7953 0.9377 0.7298 0.9248 0.6564 0.9384 0.6590

misc-attack 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

non-std-proto 0.9205 0.8731 0.9668 0.9085 0.9697 0.9107 0.9188 0.9190 0.9748 0.9251 0.9156 0.9170 0.9056 0.7632

rpc-port-decode 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8846 1.0000 1.0000 0.8846 0.7308

susp-file-detect 0.9572 0.9481 0.9701 0.9070 0.9760 0.9098 0.9575 0.9573 0.9784 0.9606 0.9435 0.9453 0.9455 0.8527

susp-login 0.8090 0.8019 0.8075 0.6474 0.8152 0.6539 0.7261 0.7141 0.8099 0.6599 0.7822 0.7776 0.8830 0.7828

sys-call-detect 0.9921 0.9903 0.9833 0.9744 0.9797 0.8264 0.9947 0.9947 0.9885 0.9057 0.9947 0.9947 0.8819 0.7313

L
ow

P
ri

misc-activity 0.7568 0.7027 0.9189 0.7027 0.8919 0.8649 0.9459 0.9730 0.9189 0.9189 0.7027 0.7027 0.7838 0.7027

network-scan 0.9608 0.9608 0.9412 0.9020 0.9412 0.9412 0.9608 0.9608 0.9020 0.9216 0.9412 0.9608 0.9804 0.9804

not-suspicious 0.9620 0.6121 0.9695 0.6164 0.9720 0.6194 0.8899 0.6971 0.9603 0.6430 0.9601 0.7753 0.9296 0.7676

proto-cmd-decode 0.9334 0.9285 0.9316 0.9243 0.9425 0.9358 0.9057 0.9061 0.9398 0.9377 0.9246 0.9222 0.9173 0.9231

was placed on detecting one alert class over another. The optimal prediction thresh-

old selected for MLP is 0.208, which is lower than the selected thresholds of 0.229 in

the previous scenario. Interestingly, the overall DRU is less than the other classifiers,

but the DRU for the high priority alert classes is collectively higher than the other

classifiers allowing MLP to achieve the highest value-focused score. For this example,

MLP has better detection capabilities in the alert classes of value, specified by the

evaluator. This demonstrates another plausible case where evaluating classifier per-

formance using marginal rates alone, using default thresholds, and not considering

detection capabilities by alert class can be ineffective in selecting a classifier for IDS

applications. The optimal thresholds are marked on the PR curves for the top six

classifiers in Figure 4.9.

87



0.80 0.85 0.90 0.95 1.00
Recall

0.80

0.85

0.90

0.95

1.00

P
re

ci
si

o
n

MLP

J48

AdaBoostJ48

BayesNet

AdaBoostBayesNet

SMO

(a) PR Curves - Recall

0.5 0.6 0.7 0.8 0.9 1.0
UTD Rate

0.80

0.85

0.90

0.95

1.00

P
re

ci
si

o
n

(b) PR Curves - UTD Rate

Figure 4.9. VFT Optimal Thresholds - Scenario 3

4.3.5 Scenario 4 - Confirm Known Threats.

The confirm known threats scenario uses the same tier 2 weights as scenarios 2

and 3 to leverage the priority level weighting by alert class, but with tier 1 weights

adjusted to emphasize recall from the classifier performance experiments. DRU is

weighted at 0, while DRK and P are evenly weighted at 0.50. This weighting scheme

could be recommended for a hybrid IDS where the goal is to use the classifier pri-

marily as a means to confirm known threats, a focus on the set Au ∩Mi discussed

in Section 2.3.4. The complete values for the weighting scheme for scenario 3 are

presented in Table 4.15.

The VFT results for this weighting scheme are provided in Table 4.18 and are very

similar to the results from the overall rates from the classifier performance experi-

ments. Although there is still an advantage of using the VFT approach as it considers

performance across the range of thresholds selecting the optimal threshold to maxi-

mize a balance between precision and known threat detection. This is demonstrated

as the thresholds selected for the each classifier differ from the previous scenarios.
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Table 4.17. VFT Weighting Scheme - Scenario 4

Tier 1 Weights Tier 2 Weights
DRK 0.50 attempted admin 0.14
P 0.50 attempted dos 0.06
DRU 0.00 attempted recon 0.06

attempted user 0.14
bad unknown 0.06
malware cnc 0.14
misc activity 0.01
misc attack 0.06

network scan 0.01
non standard protocol 0.06

not suspicious 0.01
protocol command decode 0.01

rpc portmap decode 0.06
suspicious filename detect 0.06

suspicious login 0.06
system call detect 0.06

Table 4.18. VFT Evaluation Results - Scenario 4
AdaBoost AdaBoost

J48 J48 BayesNet MLP BayesNet SMO IBk

Value-Focused Results

Threshold 0.134 0.139 0.228 0.307 0.001 0.241 0.500

Value-Focused Score 0.7003 0.6972 0.6929 0.6864 0.6772 0.6692 0.5750

Overall Performance

P 0.9242 0.9386 0.9110 0.9026 0.8744 0.8914 0.5263

DRK 0.9206 0.9149 0.9158 0.9111 0.8928 0.9000 0.9260

DRU 0.7314 0.7312 0.7581 0.7232 0.8046 0.7391 0.7341

DR by Alert Class DRK DRU DRK DRU DRK DRU DRK DRU DRK DRU DRK DRU DRK DRU

H
ig

h
P

ri attempted-admin 0.9863 0.9833 0.9829 0.9755 0.9803 0.9755 0.9773 0.9725 0.9480 0.8845 0.9703 0.9673 0.9346 0.9473

attempted-user 0.9649 0.9298 0.9123 0.9123 0.9298 0.8947 0.8947 0.9298 0.9123 0.9123 0.7368 0.7368 0.8421 0.7544

malware-cnc 0.8645 0.8527 0.8409 0.8366 0.8559 0.8333 0.8699 0.8634 0.8871 0.8871 0.8667 0.8667 0.8581 0.8505

M
ed

iu
m

P
ri

attempted-dos 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7143 1.0000 1.0000 1.0000 1.0000 0.7143 0.7143

attempted-recon 0.7672 0.7437 0.7586 0.7275 0.7600 0.7361 0.7506 0.7472 0.7427 0.7368 0.7250 0.7182 0.8786 0.8909

bad-unknown 0.9404 0.6935 0.9365 0.6994 0.9350 0.7295 0.9351 0.6606 0.9196 0.7953 0.9248 0.6564 0.9384 0.6590

misc-attack 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

non-std-proto 0.9691 0.9093 0.9664 0.9066 0.9703 0.9113 0.9188 0.8718 0.9188 0.9190 0.9156 0.9170 0.9056 0.7632

rpc-port-decode 1.0000 1.0000 1.0000 1.0000 1.0000 0.7692 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8846 0.7308

susp-file-detect 0.9758 0.9092 0.9623 0.9058 0.9751 0.9543 0.9549 0.9009 0.9575 0.9573 0.9435 0.9453 0.9455 0.8527

susp-login 0.8143 0.6533 0.8068 0.6463 0.8070 0.6554 0.8083 0.7975 0.7261 0.7141 0.7822 0.7776 0.8830 0.7828

sys-call-detect 0.9789 0.8264 0.9815 0.7665 0.9841 0.8493 0.9912 0.9894 0.9947 0.9947 0.9947 0.9947 0.8819 0.7313

L
ow

P
ri

misc-activity 0.8919 0.8649 0.8919 0.7027 0.9189 0.9189 0.7568 0.7027 0.9459 0.9730 0.7027 0.7027 0.7838 0.7027

network-scan 0.9412 0.9216 0.9412 0.9020 0.9020 0.9216 0.9608 0.9608 0.9608 0.9608 0.9412 0.9608 0.9804 0.9804

not-suspicious 0.9719 0.6193 0.9692 0.6162 0.9579 0.6399 0.9609 0.6116 0.8899 0.6971 0.9601 0.7753 0.9296 0.7676

proto-cmd-decode 0.9413 0.9355 0.9313 0.9237 0.9346 0.9322 0.9325 0.9261 0.9057 0.9061 0.9246 0.9222 0.9173 0.9231

For example, valuing known threat detection a threshold of 0.134 is selected for Ad-

aBoost.J48 compared to a threshold of 0.122 that was selected when valuing unknown
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Figure 4.10. VFT Optimal Thresholds - Scenario 4

threat detection. The optimal thresholds are marked on the PR curves for the top

six classifiers in Figure 4.10.

4.3.6 Scenario 5 - High Precision.

The high precision scenario uses the same tier 2 weights as scenarios 2, 3, and 4

to leverage the priority level weighting by alert class, but with tier 1 weights adjusted

to emphasize precision. DRU and DRK are both weighted at 0.10 and P is weighted

at 0.80. This weighting scheme could be recommended for use when limited resources

are available to review alerts. This weighting scheme should recommend classifiers

with thresholds that limit the amount of FPs, but FNs will likely increase causing

recall to decrease. The complete values for the weighting scheme for scenario 5 are

presented in Table 4.19.

The VFT results for this weighting scheme are provided in Table 4.20. The results

show a higher threshold selection resulting in higher precision for six of the seven

classifiers when compared to the results from scenario 2. IBk remains at 0.50 because
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Table 4.19. VFT Weighting Scheme - Scenario 5

Tier 1 Weights Tier 2 Weights
DRK 0.10 attempted admin 0.14
P 0.80 attempted dos 0.06
DRU 0.10 attempted recon 0.06

attempted user 0.14
bad unknown 0.06
malware cnc 0.14
misc activity 0.01
misc attack 0.06

network scan 0.01
non standard protocol 0.06

not suspicious 0.01
protocol command decode 0.01

rpc portmap decode 0.06
suspicious filename detect 0.06

suspicious login 0.06
system call detect 0.06

Table 4.20. VFT Evaluation Results - Scenario 5
AdaBoost AdaBoost

J48 J48 BayesNet MLP BayesNet SMO IBk

Value-Focused Results

Threshold 0.383 0.693 0.558 0.238 0.999 0.389 0.500

Value-Focused Score 0.7830 0.7824 0.7724 0.7582 0.7543 0.7481 0.5074

Overall Performance

P 0.9420 0.9429 0.9349 0.8995 0.9034 0.8947 0.5263

DRK 0.9145 0.9111 0.8964 0.9119 0.8752 0.8871 0.9260

DRU 0.7218 0.7180 0.7180 0.7244 0.7578 0.7327 0.7341

DR by Alert Class DRK DRU DRK DRU DRK DRU DRK DRU DRK DRU DRK DRU DRK DRU

H
ig

h
P

ri attempted-admin 0.9818 0.9781 0.9807 0.9744 0.9592 0.9491 0.9773 0.9725 0.8236 0.8117 0.9562 0.9510 0.9346 0.9473

attempted-user 0.9474 0.9123 0.9123 0.9123 0.8596 0.8421 0.8947 0.9649 0.9123 0.9123 0.7368 0.7368 0.8421 0.7544

malware-cnc 0.8441 0.8366 0.8366 0.8333 0.8172 0.8065 0.8710 0.8688 0.8634 0.8624 0.8645 0.8645 0.8581 0.8505

M
ed

iu
m

P
ri

attempted-dos 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7143 0.7143

attempted-recon 0.7578 0.7251 0.7523 0.7211 0.7308 0.7028 0.7521 0.7481 0.7342 0.7287 0.7129 0.7066 0.8786 0.8909

bad-unknown 0.9365 0.6832 0.9336 0.6802 0.9202 0.6796 0.9358 0.6620 0.8979 0.7506 0.9082 0.6564 0.9384 0.6590

misc-attack 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

non-std-proto 0.9642 0.8973 0.9603 0.9005 0.9351 0.8576 0.9197 0.8725 0.9148 0.9001 0.9085 0.9034 0.9056 0.7632

rpc-port-decode 1.0000 1.0000 1.0000 1.0000 1.0000 0.7692 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8846 0.7308

susp-file-detect 0.9615 0.9049 0.9586 0.9014 0.9530 0.9398 0.9563 0.9023 0.9552 0.9547 0.9407 0.9379 0.9455 0.8527

susp-login 0.8060 0.6446 0.8020 0.6414 0.7743 0.6235 0.8087 0.7982 0.7244 0.5803 0.7693 0.7656 0.8830 0.7828

sys-call-detect 0.9692 0.7833 0.9674 0.7577 0.9559 0.8026 0.9912 0.9903 0.9894 0.9885 0.9947 0.9947 0.8819 0.7313

L
ow

P
ri

misc-activity 0.8919 0.7027 0.8649 0.7027 0.8919 0.8919 0.7568 0.7027 0.9189 0.9189 0.7027 0.7027 0.7838 0.7027

network-scan 0.9412 0.9216 0.9412 0.9020 0.9020 0.9020 0.9608 0.9608 0.9020 0.9020 0.9412 0.9412 0.9804 0.9804

not-suspicious 0.9700 0.6169 0.9597 0.6094 0.9313 0.6112 0.9615 0.6120 0.7535 0.6092 0.9450 0.7473 0.9296 0.7676

proto-cmd-decode 0.9292 0.9243 0.9270 0.9064 0.9097 0.9015 0.9331 0.9276 0.9027 0.9024 0.9127 0.9061 0.9173 0.9231

of its non-probabilistic prediction capability with the settings used. The optimal

thresholds are marked on the PR curves for the top six classifiers in Figure 4.11. A
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Figure 4.11. VFT Optimal Thresholds - Scenario 5

visual inspection of the curves indicates thresholds selected at the top portion of the

curves for 6 of 7 classifiers. MLP is the only classifier where the selected threshold

remains at the bottom portion of curve. This is due the VFT calculation maintaining

an UTD rate of 0.7244% to optimize the overall score based on the provided weighting

scheme.

4.3.7 VFT Results Summary.

A summary of the results from the VFT evaluations is shown in Table 4.21. The

results show that classifier selection differed from traditional evaluation methods in

2 of 5 VFT evaluations. With the alert class priority weighting scheme, MLP is

selected above AdaBoostBayesNet, and with the detect unknown weighting scheme,

MLP is selected above all other classifiers while other classifier rankings shift as well.

Results also show that prediction threshold selections varied in 5 of 5 VFT evaluations.

These results demonstrate value in applying the VFT evaluation method for classifier

selection and prediction threshold selection. The VFT method allows an evaluator
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Table 4.21. VFT Weighting Schemes and Results Summary

Weighting Schemes

Balanced Alert Class Priority Detect Unknown Detect Known High Precision

Tier 1 Weights

DRK 0.25 0.25 0.00 0.50 0.10

P 0.50 0.50 0.50 0.50 0.80

DRU 0.25 0.25 0.50 0.00 0.10

Tier 2 Weights

High Pri 0.0625 0.14 0.14 0.14 0.14

Med Pri 0.0625 0.06 0.06 0.06 0.06

Low Pri 0.0625 0.01 0.01 0.06 0.06

Classifier Selection Results

1 AdaBoostJ48 AdaBoostJ48 MLP AdaBoostJ48 AdaBoostJ48

2 J48 J48 J48 J48 J48

3 AdaBoostBayesNet MLP AdaBoostJ48 AdaBoostBayesNet AdaBoostBayesNet

4 MLP AdaBoostBayesNet BayesNet MLP MLP

5 BayesNet BayesNet AdaBoostBayesNet BayesNet BayesNet

6 SMO SMO SMO SMO SMO

7 IBk IBk IBk IBk IBk

that is unfamiliar with machine learning evaluation techniques to select an optimal

classifier and prediction threshold.

4.4 Summary

In summary, this chapter presented the results and analysis for experiments con-

ducted per the methodology discussed in Chapter III. First, traditional evaluation

methods of comparing overall rates, marginal rates, and PR curves were explored

on four subsets of the dataset. Next, the proposed VFT evaluation method was ap-

plied to one of the four dataset subsets, the All Network dataset, using five notional

weighting schemes. A summary of these results is presented below.

AdaBoost.J48 and J48 consistently outperformed the other algorithms when com-

paring the overall rates of F-Measure, G-Measure, and MCC, with the highest scores

for these mean overall rates achieved using the HTTP dataset with additional fea-

tures. J48 achieved an F-Measure of 0.9705 with a 95% CI between 0.9692 and

0.9719, a G-Measure of 0.9706 with a 95% CI between 0.9692 and 0.9720, and an

MCC of 0.9623 with a 95% CI between 0.9606 and 0.9641. AdaBoost.J48 achieved
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an F-Measure of 0.9691 with a 95% CI between 0.9676 and 0.9706, a G-Measure of

0.9691 with a 95% CI between 0.9676 and 0.9706, and an MCC of 0.9603 with a 95%

CI between 0.9584 and 0.9622.

Comparisons made to determine if classifier performance was better at lower or

higher layers of the TCP/IP stack were inconclusive. The inconsistency of the nega-

tive class (normal connections) across the four datasets caused the inability to com-

pare performance metrics that incorporated the negative class metrics in the calcu-

lations. Comparisons of recall and UTD rates were accomplished and showed no

significant value in generalization between the All Network and TCP datasets when

comparing only TCP connections. However, there were significant improvements

noted in the recall and UTD rates in the All Network and TCP datasets over the

HTTP datasets when comparing only HTTP connections. This significance, while

promising, remains inconclusive without the ability to compare measures relating to

FPs.

Incorporating the detection rates from the unknown threat detection experiment

to compare with rates of precision and recall resulted in a less conclusive classifier

selection decision. While AdaBoost.J48 and J48 performed well overall in terms of

precision and recall, mid to low performance was noted in their ability to detect

unknown threats when compared to the other classifiers across the four datasets.

BayesNet consistently performed the best at detecting unknown threats, achieving

the highest UTD rate of 0.7808 with a 95% CI between 0.7788 and 0.7829 on the

TCP dataset. The difficulty in selecting a classifier using precision, recall, and UTD

rates demonstrated potential value in allowing a evaluator to weight their own value

on these metrics during the evaluation process. Also noted was the need to evaluate

across the range of prediction thresholds, rather than a default constant threshold

for each classifier, and to evaluate detection capability by alert classification, as some
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alerts exhibit higher potential damage than others.

The VFT evaluation results demonstrated an engineering advantage in evaluat-

ing classifiers using five notional weighting schemes. The balanced weighting scheme,

scenario 1, returned results similar to the overall rate comparisons as expected. Using

a weight scheme that incorporated alert priorities, scenario 2, recommended a differ-

ent optimal threshold for the highest scoring classifier, AdaBoost.J48. This scenario

also demonstrated the value of parsing a PR curve into multiple curves representing

different alert classes as it ranked a MLP above AdaBoost.BayesNet even though Ad-

aBoost.BayesNet dominated the traditional PR space using a single curve approach.

This evaluation fallacy has not been demonstrated prior to this research and is a

significant finding that should be considered when evaluating classifiers for use in

intrusion detection. The remaining scenarios continued to demonstrate value added

by applying other plausible weighting schemes focused on detecting unknown threats,

confirming known threats, and high precision, can lead to the selection of different

classifiers with different optimal thresholds. Results are summarized by concluding

that classifier selection differed from traditional evaluation methods in 2 of 5 VFT

evaluations and prediction threshold selections varied in 5 of 5 VFT evaluations.
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V. Conclusion

5.1 Chapter Overview

This chapter concludes this thesis by summarizing the research goals, followed by

the contributions made through this research. Finally, recommendations for potential

future research are presented.

5.2 Conclusions of Research

The primary goal of this research was to provide a classifier evaluation methodol-

ogy which incorporates a weighted scheme to allow an evaluator to weight metrics of

value to use when evaluating classifiers for use in hybrid IDS architectures. A Value-

Focused Thinking (VFT) methodology was applied with a value hierarchy created

specifically for the use of machine learning classifiers in hybrid IDS configurations.

This enabled an evaluator to weight precision, recall, and unknown threat detection

(UTD) rates to aid in the selection of a classifier and prediction threshold. Recall

and UTD rates were further divided by alert classification, allowing an evaluator to

weight the importance of detecting malicious connections by alert class.

The second goal of this research was to demonstrate the effectiveness of the VFT

approach, five notional weighting schemes were used in the VFT evaluation and the

results were compared to typical methods of classifier evaluation. The analysis of

these results demonstrated an engineering advantage to the use of the VFT approach

when evaluating threat classifiers as it selects classifiers and thresholds optimized for

performance that best represents the values of the evaluator.

The final goal of this research was to compare classifier performance at various

layers in the TCP/IP stack to determine if threats generalize better or worse based

on the level of data used to train the classifier. While classification performance
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related to the positive class was better at the lower layers than the application layers

for HTTP threats, inconsistencies in the negative classes of the test sets provided

inconclusive results overall.

5.3 Research Contributions

There are three main research contributions to the application of machine learning

to the field of intrusion detection. First is the comprehensive approach, similar to

cross-validation, used to evaluate a classifier’s ability to detect unknown threats.

The comprehensive nature of this method reduces the likelihood of misrepresentation

by allowing every threat the opportunity to be tested as an unknown threat. The

outcome of this is a more realistic metric to represent a classifier’s ability to detect

unknown threats.

The second contribution is the method used to separate precision-recall (PR)

curves by alert class for classifier performance evaluation. Alerts have different prior-

ity levels, by not considering this when evaluating PR curves, or ROC curves for that

matter, researchers and vendors may misrepresent the desired functionality of their

classifiers. Evaluators should question the capability of a classifier to detect specific

types or classes of attacks when the system has been trained on them (known threats)

and when they have not been trained on them (unknown threats).

Finally, the third contribution is the application of the VFT methodology to

incorporate the two previous contributions into a calculation that can be used by an

evaluator to select a classifier and an optimal threshold setting to use in a hybrid IDS

configuration.
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5.4 Recommendations for Future Research

There are three recommendations for future research to expand on this research.

The first recommendation is to extend methodology to compare the use of multi-

ple classifiers and decision-level fusion methods. While this research was limited to

selecting only one classifier and optimal threshold, combining predictions from mul-

tiple classifiers has been shown to increase overall performance [?]. Predictions can

be fused in a näıve manner using logical AND or OR conditions or by using more

complex fusing methods. The VFT method can test all classifier combinations at all

threshold levels to find the optimum combination of classifiers and thresholds best

suited to the provided weighting scheme.

A second recommendation is to use the evaluation methods from this research to

tune classifier settings. This research utilized mostly default classifier configurations.

Typically, evaluation metrics such as accuracy, precision, or recall are used to op-

timize the classifier configurations. The VFT score and/or UTD rates used in this

research could be used as evaluation metrics to tune classifiers to maximum perfor-

mance specific to the value hierarchy and weighting scheme of the evaluator rather

than optimizing to traditional evaluation metrics. The result would be classifier op-

timized to the evaluator’s values versus a one-size-fits-all approach.

The final recommendation for future research is to incorporate more meaning into

the alert classification of the Snort rule set. This research considered only the default

Snort alert classes. Creating a taxonomy of alert classifications based with the intent

of weighting them as values in a VFT evaluation methodology would yield more

meaningful PR curves for each alert class. Theoretically, this would better align the

evaluation method to meaningful values of the evaluator thus providing more useful

results than would be provided with the default alert classes.
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Appendix A. Default Snort Alert Classifications

Table A.1. Default Snort Alert Classifications [6]

Classtype Description Priority

attempted-admin Attempted Administrator Privilege Gain high

attempted-user Attempted User Privilege Gain high

inappropriate-content Inappropriate Content was Detected high

policy-violation Potential Corporate Privacy Violation high

shellcode-detect Executable code was detected high

successful-admin Successful Administrator Privilege Gain high

successful-user Successful User Privilege Gain high

trojan-activity A Network Trojan was detected high

unsuccessful-user Unsuccessful User Privilege Gain high

web-application-attack Web Application Attack high

attempted-dos Attempted Denial of Service medium

attempted-recon Attempted Information Leak medium

bad-unknown Potentially Bad Traffic medium

default-login-attempt Attempt to login by a default username
and password

medium

denial-of-service Detection of a Denial of Service Attack medium

misc-attack Misc Attack medium

non-standard-protocol Detection of a non-standard protocol or
event

medium

rpc-portmap-decode Decode of an RPC Query medium

successful-dos Denial of Service medium

successful-recon-largescale Large Scale Information Leak medium

successful-recon-limited Information Leak medium

suspicious-filename-detect A suspicious filename was detected medium

suspicious-login An attempted login using a suspicious
username was detected

medium

system-call-detect A system call was detected medium

unusual-client-port-connection A client was using an unusual port medium

web-application-activity Access to a potentially vulnerable web
application

medium

Continued on next page
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Classtype Description Priority

icmp-event Generic ICMP event low

misc-activity Misc activity low

network-scan Detection of a Network Scan low

not-suspicious Not Suspicious Traffic low

protocol-command-decode Generic Protocol Command Decode low

string-detect A suspicious string was detected low

unknown Unknown Traffic low

tcp-connection A TCP connection was detected very low
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Appendix B. Network Sensor Configuration

This appendix explains the configurations of Security Onion, Bro, and Snort used

in this research.

Security Onion Setup

Using VMWare Workstation (version 10.0.1), a virtual machine was created of

Security Onion (version 12.04.4). The hardware settings for the virtual machine

shown in the Table B.1. Updates to the Security Onion system were completed using

the soup update utility provided by the Security Onion development team. The

specific versions of applications used in this research are shown in Table B.2.

There are two setup phases for Security Onion which are accomplished using the

preloaded setup configuration found on the desktop. During the first phase of setup,

the network interfaces are configured so Eth0 is the management interface and Eth1 is

the sniffing interface. These interfaces correspond to the VMWare network adapters 1

and 2, respectively. After rebooting, the second phase of setup is completed using the

setup configuration found on the desktop again, bypassing the network configuration

portion this time. The advanced setup menu option is used to create a standalone

configuration. Snort is selected as the IDS engine using the “VRT and ET No/GPL”

rule set. Bro and ELSA are enabled in this configuration as well. Other applications

such as http agent, Argus, Prads, and Salt are not enabled as they are not used in

Table B.1. Security Onion Virtual Machine Hardware Settings

Hardware Component Specification

Memory 4 GB

Processors 1

Hard Disk 100 GB

Network Adapter 1 NAT to Host

Network Adapter 2 VMNet2
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Table B.2. Security Onion Applications

Application Version

Bro 2.3.1

ELSA Sphinx 2.0.7-id64-dev

PulledPork 0.7.0

Python 2.7.3

Sguil 0.8.0

Snorby 2.6.2

Snort 2.9.6.2

Tcpreplay 3.4.3

this research. The reader can learn more about each of these applications in [39].

After setup is complete, the status of the configured services can be seen using the

sudo service nsm status command as shown in Figure B.1.

Figure B.1. Checking Status of Security Onion Services

Snort Configuration

Snort was configured as the IDS and the rule set was selected in the Security

Onion setup. Additional steps include verifying the rule set, disabling rule updates
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(a control for the experiments), and modifying the alert output to the Unified2 file

format.

The downloaded Snort rule set is verified using the command grep -v ‘^#’

/etc/nsm/rules/downloaded.rules | sed ‘/^$/d’ > output.rules which deletes

rules that are commented out and empty lines. The total rule count for the VRT and

ET No/GPL rule set used in this research is 21,641.

By default, PulledPork performs a daily rule update using cron job with the script

/usr/bin/rule-update. While useful for an operational network sensor, to maintain

consistency throughout the experiments, no rule updates were allowed. The cron job

was disabled by commenting out the crontab entry in /etc/cron.d/rule-update as

shown in Figure B.2.

Figure B.2. Disabling Daily Rule Update Script

Output to the Unified2 format is enabled by default in Security Onion and can

be verified in the snort.conf. The default directory where the Unified2 alert logs are

written, which is needed for the Bro configuration portion, is

/nsm/sensor data/sensor name/snort-1/.
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Bro Configuration

Bro was configured to output additional connection-level features shown in Ta-

ble 3.3. To log the additional features, a copy of the script used to create the conn.log

(/opt/bro/share/bro/base/protocols/conn/main.bro) was modified to produce

another log file containing the additional features. The modified script is then saved

in the local site directory (/opt/bro/share/bro/site) and the local.bro script, in

the same directory, is updated to load the script with the @load operation. Updat-

ing the local.bro script is required to call any additional scripts beyond the default

scripts.

One field in particular, port service, was added using a script made available on the

Bro developer’s GitHub site [22]. Readers experimenting with Bro scripting should

refer to the developer’s and other community member’s GitHub sites for example

code. By default, Bro uses dynamic protocol analyzers to identify the service of

each connection. During the data processing stage, it was noticed that many of the

connections had a missing value for the service field. Using this script to add the

port service field provided the ability of identifying the service by port number in the

cases where the service field was blank.

Unified2 logging was also enabled in Bro, allowing Snort alert logs to be in the same

format as the connection-level logs produced by Bro. Enabling Unified2 logging is a

two-step process. The first step is to enable the included Unified2 logging capability

by adding the script /base/files/unified2/main.bro to the local.bro script using

the @load operation. The second step is to create an additional script to redefine the

directory Bro should watch for Unified2 alert logs and the directories where the Snort

signature map, generator map, and alert classification configurations are stored.
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Appendix C. WEKA Commands and Options

This appendix includes the options called for each WEKA function call used in

this research. Brief explanations of options are included, but full details for each

option and unused options can be found in the WEKA API documentation [8] and

the companion book [46].

Classifier Configuration Options:

BayesNet.

BayesNet is used without an all-dimensions tree data structure, an optional learn-

ing option that can speed up the learning process. The K2 search algorithm is used

with the default of 1 used for maximum number of parents and Bayes as the score

type. The default SimpleEstimator is used to estimate the conditional probability

tables of the Bayes network directly from the training data. The exact WEKA com-

mand used with options is below:

weka.classifiers.bayes.BayesNet -- -D \

-Q weka.classifiers.bayes.net.search.local.K2 -- -P 1 -S BAYES \

-E weka.classifiers.bayes.net.estimate.SimpleEstimator -- -A 0.5

AdaBoostM1.BayesNet.

AdaBoostM1.BayesNet is used with a 100% weight mass for training. This per-

centage can be decreased to speed up the learning process. AdaBoost runs for 10

iterations. The same BayesNet classifier settings previously discussed are used with

the AdaBoost algorithm. The exact WEKA command used with options is below:

weka.classifiers.meta.AdaBoostM1 -- -P 100 -S 1 -I 10 \

-W weka.classifiers.bayes.BayesNet -- -D \
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-Q weka.classifiers.bayes.net.search.local.K2 -- -P 1 -S BAYES \

-E weka.classifiers.bayes.net.estimate.SimpleEstimator -- -A 0.5

IBk .

IBk is used with a k of 1, a brute force linear nearest neighbor search, and a

standard Euclidean function to measure distance. The exact WEKA command used

with options is below:

weka.classifiers.lazy.IBk -- -K 1 -W 0 \

-A "weka.core.neighboursearch.LinearNNSearch \

-A \"weka.core.EuclideanDistance -R first-last\""

SMO.

SMO is used with the default settings for complexity constant, tolerance parame-

ter, and epsilon round-off. The -M option is added to fit logistic models to the SVM

outputs, enabling a probability estimate to be included with each prediction. The

default SVM kernel, PolyKernel, is used with the default options. The exact WEKA

command used with options is below:

weka.classifiers.functions.SMO -- -C 1.0 -L 0.001 -P 1.0E-12 \

-N 0 -M -V -1 -W 1 \

-K "weka.classifiers.functions.supportVector.PolyKernel \

-C 250007 -E 1.0"

J48.

J48 is used with the default confidence threshold for pruning of 0.25 and a mini-

mum of 2 instanes per leaf. The exact WEKA command used with options is below:

weka.classifiers.trees.J48 -- -C 0.25 -M 2
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AdaBoostM1.J48.

AdaBoostM1.J48 is used with a 100% weight mass for training and runs for 10

iterations. The same J48 classifier settings previously discussed are used with the

AdaBoost algorithm. The exact WEKA command used with options is below:

weka.classifiers.meta.AdaBoostM1 -- -P 100 -S 1 -I 10 \

-W weka.classifiers.trees.J48 -- -C 0.25 -M 2

MLP.

MLP with backpropagation is used with the default settings for learning rate and

momentum rate. The default number of epochs, 500, is also used. The exact WEKA

command used with options is below:

weka.classifiers.functions.MultilayerPerceptron -- \

-L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a

Data Preprocessing Commands and Options:

Random Sampling.

Random sampling is performed on the All Network and TCP datasets using the

command and options:

weka.filters.supervised.instance.Resample -i <dataset.arff> \

-o <dataset-10%.arff> -c last -Z 10 -no-replacement -B 1

Cross-Validation Training and Test Sets.

Training sets for the stratified cross-validation folds are created using the com-

mand and options:
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weka.filters.supervised.instance.StratifiedRemoveFolds \

-i <input-file> -o <output-training-file> -c last -N 10 \

-F <fold-number> -V

Test sets for the stratified cross-validation folds are created using the command

and options:

weka.filters.supervised.instance.StratifiedRemoveFolds \

-i <input-file> -o <output-test-file> -c last -N 10 \

-F <fold-number>
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Appendix D. Confusion Matrices

The confusion matrices in this appendix represent the total number of instances

classified across the 10 folds of the cross validation experiments for each dataset and

classifier.

Table D.1. Confusion Matrix - All Network Data

Classifier True Positives False Positives True Negatives False Negatives

AdaBoost.BayesNet 132,276 9,734 227,864 14,255

AdaBoost.J48 133,810 8,063 229,535 12,721

BayesNet 128,810 15,818 221,780 17,721

IBk 135,689 122,146 115,452 10,842

J48 133,767 8,193 229,405 12,764

MLP 133,036 13,227 224,371 13,495

SMO 128,309 14,714 222,884 18,222

Table D.2. Confusion Matrix - TCP Data

Classifier True Positives False Positives True Negatives False Negatives

AdaBoost.BayesNet 132,070 8,941 189,024 13,174

AdaBoost.J48 132,948 7,295 190,670 12,296

BayesNet 128,528 14,222 183,743 16,716

IBk 136,305 119,374 78,591 8,939

J48 132,841 7,392 190,573 12,403

MLP 132,294 11,424 186,541 12,950

SMO 129,770 13,441 184,524 15,474

Table D.3. Confusion Matrix - HTTP Data

Classifier True Positives False Positives True Negatives False Negatives

AdaBoost.BayesNet 39,583 1,619 144,805 2,364

AdaBoost.J48 40,367 1,231 145,193 1,580

BayesNet 41,428 13,259 133,165 519

IBk 39,762 2,226 144,198 2,185

J48 40,200 901 145,523 1,747

MLP 36,879 2,532 143,892 5,068

SMO 32,693 7,288 139,136 9,254
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Table D.4. Confusion Matrix - HTTP Data with Additional Features

Classifier True Positives False Positives True Negatives False Negatives

AdaBoost.BayesNet 39,601 1,510 144,914 2,346

AdaBoost.J48 40,478 1,113 145,311 1,469

BayesNet 41,393 13,062 133,362 554

IBk 38,144 66,244 80,180 3,803

J48 40,279 777 145,647 1,668

MLP 31,039 2,985 143,439 10,908

SMO 37,942 3,196 143,228 4,005

Table D.5. Confusion Matrix - FTP Data

Classifier True Positives False Positives True Negatives False Negatives

AdaBoost.BayesNet 42,817 75,127 34,280 5,999

AdaBoost.J48 1,177 683 108,724 47,639

BayesNet 42,817 75,127 34,280 5,999

IBk 17,568 32,177 77,230 31,248

J48 704 136 109,271 48,112

MLP 552 234 109,173 48,264

SMO 110 40 109,367 48,706

Table D.6. Confusion Matrix - FTP Data with Additional Features

Classifier True Positives False Positives True Negatives False Negatives

AdaBoost.BayesNet 42,817 75,127 34,280 5,999

AdaBoost.J48 1,133 611 108,796 47,683

BayesNet 42,817 75,127 34,280 5,999

IBk 48,704 98,418 10,989 112

J48 703 137 109,270 48,113

MLP 647 229 109,178 48,169

SMO 144 40 109,367 48,672
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